Heat and Thermo 11

- 1. A ball is dropped.
 - A. As it falls its amount of potential energy _____ and its kinetic energy _____
 - B. Since entropy is about the quality of energy or the amount of usable energy, an object dropped from a lower height has more or less entropy?
 - C. After a ball hits the ground, its kinetic energy: increases or decreases?
 - D. Where has this energy gone?
 - E. The total energy of the ball/ground system has:
 - F. The total entropy of the ball/ground system has:

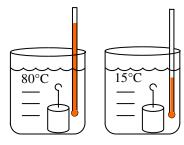
Heat Engine $Q_{Hot-100\%}$ 70% W_{Out} Q_{Cold}

Again, on the diagram, notice that Q_H is 100%. W_{out} is the efficiency. This diagram shows that the efficiency is 70% (which = W_{out}). The inefficiency is Q_C (or 30% for the engine). This allows you to do very simple proportions.

For this engine:
$$\frac{Q_H}{100\%} = \frac{Q_C}{Q_H} = \frac{W_{out}}{70\%}$$

For any engine:
$$\frac{Q_H}{100\%} = \frac{Q_C}{\% \text{ inefficient}} = \frac{W_{out}}{\% \text{ efficient}}$$

- 2. In one complete cycle a heat engine absorbs 450 J of heat from a hot reservoir (a reserve of heat) and expels 200 J of heat to a cold reservoir (a reserve that stays cold). What is the efficiency of the engine?
- 2. W = 450-200 = 250J, so eff = 250/450 = 55.6%


- 3. A heat engine is 45% efficient. It absorbs 600 J of heat each second from a hot reservoir.
 - A. What percent is 600 J?
 - B. What percent is the work done?
 - C. How much work is done each second by the engine?
- 4. A heat engine loses 2500 J of heat to a cold reservoir. The engine has an efficiency of 65%.
 - A. How inefficient was the heat engine?
 - B. What percentage is Q_H ?
 - C. How much heat was gained from the hot reservoir?

W/45% = 600/100% W = 270 J 4A: 35%

3A: 100%

3B: 45%

- (100–65) 4B: 100%, always 4C: set up a proportion: 2500/35%, etc.
- 5. A piston has a circular cross sectional area with a diameter of 12 cm. The piston rises 8 cm in each stroke. 62kJ of work is done and 84kJ of heat is ejected into a river with each power stroke.
 - A. Calculate the pressure in the piston. (See bottom of p1 HW3 for help on work in a piston.)
 - B. How much heat was added at the boiler?
 - C. How efficient was the engine?

6. A 400 g copper ($c_p = 387 \text{J/kg} \cdot ^{\circ}\text{C}$) mass is in a beaker of water at 80°C. The water is allowed to cool to 15°C. Calculate the amount of heat gained or lost by the copper object.