

Heat and Thermo 10

Notice that the Q_H arrow is equal to the Q_C and W arrows. So Q_H is the whole and the others are the parts. W is the useful work done by the engine. Q_C is the heat that is not used, so is "wasted" and is the inefficiency of the engine. This engine is 50% efficient.

In general : $Eff = \frac{W_{out}}{W_{in}} \times 100$

For heat engines: $Eff = \frac{W_{out}}{Q_H} \times 100$

This engine is more efficient because less heat is lost at Q_C and the useful work is a greater percentage of the absorbed heat (Q_H) . This engine is 70% efficient. Only 30% is lost to the environment.

- 1. A heat engine does 55 J of work each cycle and expels 29 J of heat in the radiator. A. How much heat was added at the boiler?
 - B. How efficient is the engine?
- 2. A heat engine absorbs 4500 J per second from its fuel source. It gives up 3000 J to a cold reservoir each second.
 - A. How much work is done each second?
 - B. Calculate the engine's efficiency?
- 3. Adiabatic, isovolumetric, or isothermal?
 - A. ____In the <u>compressor</u> of a refrigerator.
 - B. _____In the boiler of a heat engine.
 - C. _____In the piston of a heat engine.
 - D. ____* When heat is absorbed by the refrigerant while inside the refrigerator.
 - E. _____When heat is dissipated in the coils at the back of the refrigerator.
 - F. _____Steam is cooled after the piston of a heat engine.
 - G. _____At the expansion valve of a refrigerator.
- 4. +, -, or 0?
 - A. _____* Q for the refrigerant (the gas) inside the refrigerator compartment.
 - B. ____ W by the gas at the refrigerator's expansion valve.
 - C. _____ Q for the refrigerant when outside the refrigerator compartment.
 - D. ____ ΔU for the refrigerant during one entire cycle.
 - E. _____ W by the gas in a heat engine's piston.
 - F. ΔU for any cyclic process.
 - G. _____ Q in the boiler of a heat engine.
 - H. _____ W for the refrigerant inside the refrigerator compartment.
 - I. _____ Q in the radiator of a steam engine (after the piston).

A. 55+29 = 84J
B. W/Q_H = = 55/84 = 65%

A. $Q_H = Q_C + W$ $W = Q_H - Q_C$ W = 4500 - 3000W = 1500 J