2012 Heat and Thermo 5

- 1. In any natural process:
 - A. The energy of the universe: increases; decreases; stays the same.
 - B. The entropy of the universe: increases; decreases; stays the same.
- 2. Which has more positional entropy: a solid or a liquid?
- 3. A. When does a ball have more entropy: as it is falling thru the air or after it has hit the ground?
 - B. Explain.
- 4. Which has more entropy?
 - A. A liquid or a gas? Gas
 - B. An object with kinetic energy or after the kinetic energy turns to heat?
 - C. Billiard (pool) balls when the are racked or after they are broken apart (scattered around the table)?
- 5. An egg is bumped off of a table and breaks when it hits the ground.
 - A. What kind of energy does it gain as it drops?
 - B. Does the egg have more entropy before or after it hits the ground?
 - C. If the egg were to move up and put back together, would that contradict the Law of Conservation of Energy (and the 1st Law of Thermodynamics)?
 - D. * What Law would be violated by the egg moving back up to the table?
- 6. Imagine a closed system.
 - A. If it is closed, can there be any outside work?
 - B. The entropy of the system: increases; decreases; stays the same.
 - C. Is there anything external to the universe?
 - D. Is it possible for there to be external work for the universe?

This is why the total entropy of the universe must always increase.

From "Thermodynamic Processes". Study Help available.

- 7. Isothermal (T); Isovolumetric (V); Adiabatic (A)?
 - A. ____ * A tire being rapidly inflated.
 - B. ____ * A tire expanding gradually as it is heated.
 - C. ____ A tire being heated with it is in a rigid metal container.
 - D. ____ In a refrigerator when the compressor compresses the refrigerant quickly.
 - E. ____ In a refrigerator when the refrigerant (which is in a <u>metal tube</u>) absorbs heat from the inside of the refrigerator.
 - F. ____ In a refrigerator when the refrigerant expands quickly.
 - G. Q = W.
 - H. ____ $\Delta U = 0$.
 - I. $\Delta U = Q$.
- 8. Positive, Negative, or Zero?
 - A. ____ * ΔU during an isovolumetric process if heat is removed.
 - B. ____ * Q in an isovolumetric process if ΔU is negative.
 - C. $__$ ΔU during an isothermal process.
 - D. ____ Q in an adiabatic process if the gas expands.
 - E. $\triangle U$ if Q = W.
 - F. ____ ΔU when positive work is done on the gas (Q = 0).
 - G. ____ ΔU when negative work is done by the gas (Q = 0).
 - H. ____ ΔU during an adiabatic expansion.
 - I. ____ Work done by the gas when Q = 0, but temperature decreases.
 - J. ____ Work done by the gas when the volume of the gas increases.
 - K. ____ Q in an isothermal process if the gas compresses.
 - L. $__$ ΔU if Q = 0 and the gas is compressed.
 - M.____ Work done by the gas during an isovolumetric process.

D. 2nd Law of Thermo (Entropy)

A: Adiab (rapidly)
B: both W and Q, so Isothermal

A. - (Isovol, so w = 0) B. W = 0, so if ΔU is -, then Q must be -

- 9. 75 joules of work is done to compress a gas, while 20 joules of heat is removed as heat.
 - A. Since the gas is compressed, is the W done on the gas + or -?
 - B. Since heat is removed, is Q + or -?
 - C. Use the First Law of Thermodynamics to find the change of internal energy of the gas.
- 10. 35 joules of work is done by a gas as it expands, yet the gas doesn't change temperature.
 - A. Since the gas is expanded, is W + or -?
 - B. Since the gas doesn't change temperature, what is the ΔU (change of internal energy) for the gas?
 - C. How much heat (Q) was added?