1. Heat is added to a gas.
A. Q for the gas is:
B. Give one way that the gas could not change its temperature.
C. * True or false and why: "A gas's temperature must decreases when it releases heat."
2. 5 kg of an unknown substance requires 60 kJ to vaporize completely. What is the latent heat of vaporization for this substance?
3. 350 g of water at $15^{\circ} \mathrm{C}$ is placed inside a refrigerator. The water is cooled to $4^{\circ} \mathrm{C}$ in 12 minutes. 25 kJ of heat is dissipated into the room from the coils behind the refrigerator.
A. Calculate the heat removed from the water.
B. The heat you just calculated, is that Q_{C} or Q_{H} ?
C. Is $25 \mathrm{~kJ} \mathrm{Q}_{\mathrm{C}}, \mathrm{Q}_{\mathrm{H}}$, or W ?
D. Remembering that $1 \mathrm{~kJ}=1000 \mathrm{~J}$, how much work was done by the compressor?
E. What is the efficiency of the refrigerator?
F. What is the power used by the compressor during the 12 minutes?

The graph below is known as a "PV diagram" or a "Pressure/Volume diagram". Let's learn how to read it. Be sure to notice that the numbers on each axis are multiplied by a factor.

4. * What is the pressure at point A?
5. * What is the volume at point B ?
6. As the gas moves from point B to point C the volume changes at constant pressure.
A. Did the gas expand or contract?
B. Is this + or - work done by the gas?
C. Calculate the work done by the gas from B to C.

Actually point C is at a lower temperature than B. Since $P V=n R T$, if P stays the same and V decreases, then T must decrease, too.
7. Since the gas compresses from B to C and the temperature decreased,
A. Is $\Delta \mathrm{U}+,-$, or 0 ?
B. Is $W_{\text {by the gas }}+,-$, or 0 ?
C. Is $\mathrm{Q}+,-$, or 0 ?
D. Which is greater: the magnitude of Q or W ?
8. * How much work is done from C to A ? B and A are on a curved line known as an isotherm.
9. If B is at 350 K , what is the temperature of A ?
10. From A to B is an isothermal process.
A. $\Delta \mathrm{U}=+,-$, or 0 ?
B. Did the gas expand or contract from A to B ?
C. So is $W_{\text {by the gas }}+,-$, or 0 ?
D. $\mathrm{Q}=+,-$, or 0 ?
E. Which is greater: the magnitude of Q or W ?

1. Heat is added to a gas.
A. Q for the gas is: t
B. Give one way that the gas could not change its temperature. letitexpand.
C. * True or false and why: "A gas's temperature must decreases when it releases heat."
2. 5 kg of an unknown substance requires 60 kJ to vaporize completely. What is the latent heat of vaporization for this substance? Q
$Q=m L v \quad L_{v}=\frac{G 0 \mathrm{~kJ}}{5 \mathrm{~kg}}=12 \mathrm{~kJ} / \mathrm{kg}$
3. 350 g of water at $15^{\circ} \mathrm{C}$ is placed inside a refrigerator. The water is cooled to $4^{\circ} \mathrm{C}$ in 12 minutes. 25 kJ of heat is dissipated into the room from the coils behind the refrigerator.
A. Calculate the heat removed from the water.

$$
\begin{aligned}
& \text { Calculate the heat removed from the water. } \\
& Q Q=m C_{p} D=-35(4186)(4-15)=-16,116 \mathrm{~J}
\end{aligned}
$$

B. The heat youjust calculated, is that $\overline{Q_{C}}$ or Q_{H} ? inside Frig
C. Is $25 \mathrm{~kJ} \mathrm{Q}_{\mathrm{C}}$. Q_{H}, or W? behimd refrig is hot ter
D. Remembering that $1 \mathrm{~kJ}=1000 \mathrm{~J}$, how much $Q_{H}=Q<+\omega \omega=C Q-Q<$ work was done by the compressor?

$$
\begin{aligned}
& =2 H \mathrm{HJ}-16 \mathrm{~kJ} \\
& =25 \mathrm{~kJ} \\
& =9 \mathrm{~kJ}
\end{aligned}
$$

$$
\text { eff }=\frac{w}{Q_{H}}=\frac{9}{25}=36 \%
$$

F. What is the power used by the compressor during the 12 minutes?

$$
p=\frac{w}{t}=\frac{9 k J}{12(60)}=12.5 \mathrm{waths}
$$

The graph below is known as a "PV diagram" or a "Pressure/Volume diagram". Let's learn how to read it. Be sure to notice that the numbers on each axis are multiplied by a factor.

4. * What is the pressure at point $\mathrm{A} ? 7 \times 10^{5} \mathrm{P} 2$
5. * What is the volume at point B ? $6 \times 10^{-3} \mathrm{~m}^{3}$
6. As the gas moves from point B to point C the volume changes at constant pressure.
A. Did the gas expand or contract?
B. Is this + of -work done by the gas?
C. Calculate the work done by the gas from B to C .

$$
\begin{aligned}
W_{b y} & =p \Delta v \\
& =2 \times 10^{5}\left(-4 \times 10^{-3}\right) \\
& =-8005
\end{aligned}
$$

Actually point C is at a lower temperature than B.
Since $P V=n R T$, if P stays the same and V decreases,
T must also decrease.

1C: false. You could do work on it.
2. See "Latent Heat" notes
A.
7. Since the gas compresses from B to C and the temperature decreased,
A. Is $\Delta \mathrm{U}+$, , or 0? T went \downarrow
B. Is $W_{\text {by the gas }}+-$ or 0 ? compressed
$\operatorname{since} D U=Q+W$
D. Which is greater: the magnitude of Qor W? see right \rightarrow
8. * How much work is done from C to A ? oJ. No change of volume.
B and A are on a curved line known as an isotherm.
9. If B is at 350 K , what is the temperature of A ? $350 \mathrm{~K}-150$ therwimeems isothermel $=52 \mathrm{mat}$
10. From A to B is an isothermal process.
A. $\Delta \mathrm{U}=+,-$, or (02) again ; iso thermel. if $\Delta T=0, \operatorname{tinen} \Delta U=0$
B. Did the gas expand or contract from A to B ? expand
C. So is $W_{\text {by the gas }}^{\{ }, 4$, , or 0 ? and the g as wants to lose T
D. $Q \neq-$, or 0 ?
E. Which is greater: the magnitude of Q or W ? same $\quad \Delta U=Q+W$

