1. The following diagram will help you remember the terms we use for water. Follow the arrows to fill in the blanks.

When a solid changes directly to a gas
(like ice cubes shrinking in the freezer)
2. Gain or lose of energy?
A. \qquad When water freezes.
C. \qquad When water boils.
E. ___ During condensation.
B. \qquad During sublimation.
D. \qquad When ice melts.
F. \qquad When water turns to steam.
3. Solid, Liquid, or Gas?
A. Water at $50^{\circ} \mathrm{C}$.
C. \qquad Water at $10^{\circ} \mathrm{F}$.
E. Water at $100^{\circ} \mathrm{C}$.
B. \qquad Water at $120^{\circ} \mathrm{C}$.
D. \qquad Water at $-5^{\circ} \mathrm{C}$.
F. \qquad * Water at 285 K .

Understanding the heat equation $\left(Q=m c_{p} \Delta T\right)$ and specific heat $\left(c_{p}\right)$:
4. Steam has a specific heat of $2010 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}$.
A. * How much heat (in J) is necessary to raise 1 kg of steam 1 degree Celsius?
B. * How much heat is necessary to raise 1 kg of steam 2 degrees Celsius?
5. Ice has a specific heat of $2090 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}$. How much heat is necessary to raise 1 kg of ice 1 degree Celsius?
6. Water has a specific heat of $4186 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{C}^{\circ}$. How much heat is necessary to raise 1 kg of water 1 degree Celsius?
7. So, if the specific heat of a substance is bigger it requires \qquad heat (in J) to raise its temperature.
8. Which phase of water required the most heat to change temperature?
9. * Can you use the same equation (do one single calculation) to calculate the energy needed heat liquid water and steam?
10. The Celsius thermometer below is used to measure the temperature of 3 kg of water. We will assume that the water is at normal atmospheric pressure. (See footnote below.)

Now the 3 kg of water is at $0^{\circ} \mathrm{C}$. At this point heat must be removed to it to fuse it into ice. This heat is known as "latent heat of fusion". The equation is $Q=m L_{\text {fusion }}$ and $L_{\text {fusion for ice }}= \pm 3.33 \times 10^{6} \mathrm{~J} / \mathrm{kg}$. It is + when melting and -when freezing.
A. $100^{\circ} \mathrm{C}$
B. $0^{\circ} \mathrm{C}$
C. Figure it out.
D. See front
E.
F. Liquid (between 0 and $100^{\circ} \mathrm{C}$)
G.
H. $0^{\circ} \mathrm{C}$
I. $-60^{\circ} \mathrm{C}$
J. $Q=m c_{p \text { water }} \Delta T$
$=3(4186)(-60)$
$=-7.53 \mathrm{E} 5 \mathrm{~J}$
K. 3(-3.33E5)
$=-9.99 \mathrm{E} 5 \mathrm{~J}$
(- since freezing)
L. What will be the initial temperature of this water when it has turned to ice?
M. What will be the change of temperature of this water during its solid (ice) phase ($\Delta \mathrm{T}_{\mathrm{ice}}$) ?
N. Calculate the heat removed from the ice to lower it to $-30^{\circ} \mathrm{C}$.
O. Calculate the total heat removed from the water to lower it from 60° to $-30^{\circ} \mathrm{C}$.
L. $0^{\circ} \mathrm{C}$
M. $-30^{\circ} \mathrm{C}$
N. $\mathrm{Q}=\mathrm{mc}_{\mathrm{p} \text { ice }} \Delta \mathrm{T}$
$=-1.88 \mathrm{E} 5 \mathrm{~J}$
O. Add em up: $-1.94 \mathrm{E} 6 \mathrm{~J}$

1. Condensation/ Sublimation/ Deposition 3F: Liquid ($0^{\circ} \mathrm{C}=273 \mathrm{~K}$) 4A: 2010 J

4B: $2(2010)=4020 \mathrm{~J} \quad$ 9. No-they have different Cps.
Footnote: if not at standard pressure (1 atmosphere) the freezing point and boiling point change. Greater pressures (like a pressure cooker) can cause water to stay liquid at much higher temperatures than $100^{\circ} \mathrm{C}$.

