You should now know that Electric Forces and Electric Fields are vectors and that Electric Potential Energy and Electric Potential (voltage) are scalars. You should also know their units and that anything that is per C (N/C or J/C) is about the position, not the charge at that position.

Let's start with some unit stuff.

1. A 6 C charge is at a position that has an electric potential of 0.5 V .
A. How much potential energy does it have?
B. If it is released from this position, how much kinetic energy would it have after a long time?
2. A -0.2 C charge is placed at a point in space that has a $4 \mathrm{~N} / \mathrm{C}$ electric field.
A. How much force does it feel?
B. If released, does it move with or against the field?
3. 15 J of work is necessary to bring a 3 C charge to a particular position.
A. What is the electric potential (voltage) at that position?
B. How much kinetic energy will it gain after it is released?
4. $\mathrm{A}+5 \mathrm{C}$ charge feels 2.5 N of force when it is at a particular position.
A. What is the electric field strength at that position?
B. If released, will the charge move with or against the field?

Let's reinforce the ideas of scalar and vector and the direction of E. (The numbers are made up.)
5. The diagram below gives the Electric Field strengths and Electric Potential for the given point from the two charges.

A. Remembering to use $a+$ test charge for direction, draw the electric fields pushing or pulling at the point, due to the charges.
B. Calculate the net electric field at the point (and give direction).
C. Calculate the net electric potential at the point.
6. The sign of the right charge is change, as shown. Notice the magnitudes stay the same.
A. Remembering to use $a+$ test charge for direction, draw the electric fields pushing or pulling at the point, due to the charges.
B. Calculate the net electric field at the point (and give direction).

8 V
4N/C
8 V

C. Calculate the net electric potential at the point.
7. The right charge is now moved directly below the point.

A. Draw the individual electric fields pushing or pulling at the
point. Then draw the direction of the net field.
B. Calculate the net electric field at the point (and give direction).

$$
F_{e}=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}}
$$

1A. $(0.5 \mathrm{~J} / \mathrm{C}) 6 \mathrm{C}=3 \mathrm{~J}$

1B: $3 \mathrm{~J} . \mathrm{PE}=\mathrm{KE}=\mathrm{W}$
$2 \mathrm{~A}:(4 \mathrm{~N} / \mathrm{C})(0.2 \mathrm{C})=$ 0.8 N

2B: against (opp) field since E is direction $\mathrm{a}+\mathrm{q}$ would move.
$3 \mathrm{~A}: 15 \mathrm{~J} / 3 \mathrm{C}=5 \mathrm{~J} / \mathrm{C}$ $=5$ Volts

3B: $15 \mathrm{~J}(\mathrm{KE}=\mathrm{W})$
$4 \mathrm{~A}: 2.5 \mathrm{~N} / 5 \mathrm{C}=0.5 \mathrm{~N} / \mathrm{C}$
4 B : E is what + charge would move, so "with the field"

5A: It is a push from the left charge and a pull from the right charge.
5B: $7 \mathrm{~N} / \mathrm{C}$ to the right

5C: $8-5=3$ Volts (no direction: scalar)

6A: Push from left; push from right
$6 \mathrm{~B}: 1 \mathrm{~N} / \mathrm{C}$ to the right (4 is $>$ the 3)
$6 \mathrm{C}: 8+5=13 \mathrm{~V}$

7A:

7B: 3,4, 5 triangle, so $5 \mathrm{~N} / \mathrm{C}$ $\theta=\tan ^{-1}(\mathrm{y} / \mathrm{x})=$ $=36.9^{\circ}$

7C. $8+5=13 \mathrm{~V}$ (don't ya just love scalars!?!)

2011 PreAP Electrostatics 4-p2 $\quad F_{e}=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}} \quad E=k_{c} \frac{q_{1}}{r^{2}} \quad P E=k_{c} \frac{q_{1} q_{2}}{r} \quad V=k_{c} \frac{q_{1}}{r}$
Let's now learn better how to move between the four electrostatic equations. (And units may also help.)
8. How do you get the electric field equation from the force equation?
9. How can you easily calculate the electric potential (voltage) given the electric field?
10. How do you calculate the potential energy from the force?
11. Given E , how do you calculate F ?

Remembering that $\mu \mathrm{C}=\times 10^{-6} \mathrm{C}, \mathrm{mm}=\times 10^{-3} \mathrm{~m}$ and $k=\times 10^{9} \ldots$
12. Two charges are separated as shown below. (Answers below [I need more room.])
A. Calculate the electric field at the position of the $3 \mu \mathrm{C}$ charge.
8. divide by the q at the given position
9. Mult by r
10. Mult by r
11. Mult by the q at the given position

12A:
$8 \mu \mathrm{C} \quad 3 \mathrm{~mm} \quad 3 \mu \mathrm{C}$
$\oplus \quad \oplus$
B. Calculate the force on the $3 \mu \mathrm{C}$ charge.
C. Calculate the voltage of the $3 \mu \mathrm{C}$ charge's position.
D. Calculate the potential energy of the $3 \mu \mathrm{C}$ charge.

12A) $E=k_{c} \frac{\left|q_{1}\right|}{r^{2}}=\frac{|9 E 9(8 E-6)|}{(3 E-3)^{2}}=8 E 9 \mathrm{~N} / \mathrm{C}$

12B)

12C)

$$
F_{e}=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}} \quad F e=\frac{9 E 9(8 E-6)(3 E-6)}{(3 E-3)^{2}}=2.4 \times 10^{4} N \quad \text { or } \quad F_{e}=q E=C(N / C)=8 E 9(3 E-6)=2.4 E 4 N
$$

$$
V=k_{c} \frac{q_{1}}{r} \quad=\frac{9 E 9(8 E-6)}{(3 E-3)}=2.4 E 7 \mathrm{~J} / C \quad O R \mathrm{~V}=\mathrm{E}(\mathrm{r})=8 E 9(3 E-3)=2.4 E 7 \mathrm{~J} / C
$$

12D)

$$
P E=k_{c} \frac{q_{1} q_{2}}{r}=\frac{9 E 9(8 E-6)(3 E-6)}{(3 E-3)}=72 J \quad O R P E=q V=(3 E-6)(2.4 E 7)=72 J
$$

