In the last homework we learned that the electric field (in N / C) stayed the same as we changed charges. So the electric field is a constant for a particular position. Also, we learned that $F=q E$ (the units make this clear.)

Let's again start with some background information. $\mathrm{k}=9 \times 10^{9}$ and

1. $\mathrm{k} /\left(3 \times 10^{3}\right)=$

We already know that $P E=m g h$ and $F w=m g$, so $P E=F h$ or $F d$, or F times meters.
2. What variable in the force equation has the units of meters?
3. Write the electric force equation below, multiply
by r , and give the new equation for PE .
And now we have an equation for the potential energy between two charges.

4. A 1 C charge is 3 km from a 4 C charge.
A. Calculate the potential energy between them.
B. Divide this PE by the 1 C charge.
5. The 1 C charge is replaced with a 2 C charge.
A. Calculate the potential energy between them.
B. Now divide the energy by the 2 C charge.

6. Then the 2 C charge is replaced with a 3 C charge.
A. Calculate the potential energy between them.
B. Divide the energy by the 3 C charge.

Once again we see that there is something special about this position in space. 3 km away from a 4 C charge will have $12 \times 10^{6} \mathrm{~J} / \mathrm{C}$ of.....?. So what is this thing that has the units of J/C. You should recognize this as voltage, which we call electric potential. It is the same as what's made by a battery. So, what is J/C? It tells you, at this position, how many joules of energy is possible for every coulomb of charge placed at that position: it is the potential for energy, but not energy. If you know volts and coulombs, you know energy.

7. A 6 C charge is placed 3 km to the right of a 4 C charge.
A. What is the electric potential at the 6 C charge's position?
B. What is the PE of the 6 C charge at this position?
8. A. What is the electric potential everywhere on the 3 km radius circle shown on the diagram (no direction-it is a scalar)?
B. Calculate the potential energy of the $2 \mu \mathrm{C}$ charge.

Now, using units, you should see that you can just multiply the electric field (N/C) by the charge (C) to calculate the force.
9. A point in space has an electric potential of $9 \mathrm{~V}(\mathrm{~J} / \mathrm{C})$. How much energy does a 0.5 C charge have at that position?
10. A $12 \mu \mathrm{C}$ charge is placed where the electric potential is 0.25 V . What is the energy of the charge?
11. A $3 \mu \mathrm{C}$ charge has 9 J of potential energy. What is the electric potential at that point?

$$
F_{e}=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}}
$$

1: $\quad 9 / 3=3$
and $10^{9} / 10^{3}=10^{6}$
$=3 \times 10^{6}$
r is in meters.
$F_{e} r=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}} r$
$P E=k_{c} \frac{q_{1} q_{2}}{r}$
4A. $\mathrm{PE}=9 \mathrm{E} 9(4) 1 / 3 \mathrm{E} 3=$
Since 9E9/3E3 $=3 \mathrm{E} 6$,
$\mathrm{PE}=(3 \mathrm{E} 6) 4(1)$
$\mathrm{PE}=12 \times 10^{6}$ Joules
4B: $12 \mathrm{E} 6 / 1=12 \times 10^{6} \mathrm{~J} / \mathrm{C}$

5A: $=3 \mathrm{E} 6(2)(4)=24 \mathrm{E} 6 \mathrm{~J}$
(PE doubles if q doubles)

5B: $24 \mathrm{E} 6 / 2 \mathrm{C}=12 \times 10^{6} \mathrm{~J} / \mathrm{C}$ hmmmm

6A: 3 times the charge $=$ 3 times the energy $=$ $36 \times 10^{6} \mathrm{~J} / \mathrm{C}$
6B: $36 \mathrm{E} 6 / 3=12 \times 10^{6} \mathrm{~J} / \mathrm{C}$

7A: $12 \times 10^{6} \mathrm{~J} / \mathrm{C}$ (still)
$7 \mathrm{~B}:(12 \mathrm{E} 6 \mathrm{~J} / \mathrm{C})(6 \mathrm{C})=$ $72 \times 10^{6} \mathrm{~J}$

8A: $12 \times 10^{6} \mathrm{~J} / \mathrm{C}$ (Same q and same r) but no direction.
$8 \mathrm{~B}:(12 \mathrm{E} 6 \mathrm{~J} / \mathrm{C})(2 \mathrm{E}-6 \mathrm{C})=$ $2(12)\left(10^{6}\right)\left(10^{-6}\right)=$ $24\left(10^{0}\right)=24(1)=$ 24 J
$\frac{9 J}{1 C}\left(\frac{0.5 C}{1}\right)$
9. $=4.5 \mathrm{~J}$
10. ($0.25 \mathrm{~J} / \mathrm{C}) 12 \mathrm{E}-6 \mathrm{C}$ $=3 \mathrm{E}-6 \mathrm{~J}$
13. $3 \times 10^{6} \mathrm{~J} / \mathrm{C}$

$$
k_{c}=9 \times 10^{9} \quad F_{e}=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}} \quad E=k_{c} \frac{q_{1}}{r^{2}} \quad P E=k_{c} \frac{q_{1} q_{2}}{r}
$$

Let's derive the equation for voltage (electric potential). We will use what we did on the front, where to find V we did $P E / q$.
12. A. Write the equation for electric potential energy over (divided by) q_{2}.
B. q_{2} is really $\mathrm{q}_{2} / 1$. Now remembering to multiply by the reciprocal, divide the force equation by q_{2} and give the new equation for electric potential (voltage).
13. A $3 \mu \mathrm{C}$ charge is 2 mm away from an $8 \mu \mathrm{C}$ charge.

$8 \mu \mathrm{C} \quad 2 \mathrm{~mm} \quad 3 \mu \mathrm{C}$
 \oplus

A. With our new equation, calculate the electric potential at the $3 \mu \mathrm{C}$'s position due to the $8 \mu \mathrm{C}$. (Again, you don't need a calculator.)
B. Using the electric potential, calculate the potential energy of the $3 \mu \mathrm{C}$ charge. (No calculator.)

$$
\begin{aligned}
\frac{P E_{e}}{q_{2}} & =\frac{\left(k_{c} \frac{\left|q_{1} q_{2}\right|}{r}\right)}{q_{2}} \\
V & =k_{c} \frac{q_{1}}{r}
\end{aligned}
$$

$$
\begin{aligned}
V & =k_{c} \frac{q_{1}}{r} \\
V & =\frac{9 E 9(8 E-6)}{(2 E-3)} \\
V & =9 E 9(4 E-3) \\
V & =36 \times 10^{6} V
\end{aligned}
$$

$$
\begin{aligned}
& P E=\left(36 \times 10^{6} \mathrm{~J} / C\right)(3 E-6 C) \\
& P E=[36(3)]\left(10^{6}\right)\left(10^{-6}\right) \\
& P E=[(30+6) 3]\left(10^{0}\right) \\
& P E=(90+18)(1) \\
& P E=108 \mathrm{~J}
\end{aligned}
$$

