HW 4

In the last homework we learned that the electric field (in N/C) stayed the same as we changed charges. So the electric field is a constant for a particular position. Also, we learned that F = qE (the units make this clear.)

Let's again start with some background information. $k = 9 \times 10^9$ and

1. $k/(3 \times 10^3) =$

We already know that PE = mgh and Fw = mg, so PE = Fh or Fd, or F times meters.

- 2. What variable in the force equation has the units of meters?
- 3. Write the electric force equation below, multiply by r, and give the new equation for PE.

And now we have an equation for the potential energy between two charges.

4 C 3 km

 \oplus

1 C

- 4. A 1 C charge is 3km from a 4C charge.
 - A. Calculate the potential energy between them.
 - B. Divide this PE by the 1 C charge.

4 C 3 km 2 C

3 km

 \oplus

4 C

 \oplus

 \oplus

3 C

 \oplus

- 5. The 1 C charge is replaced with a 2 C charge.
 - A. Calculate the potential energy between them.
 - B. Now divide the energy by the 2 C charge.

6. Then the 2C charge is replaced with a 3C charge.

- A. Calculate the potential energy between them.
- B. Divide the energy by the 3 C charge.

Once again we see that there is something special about this position in space. 3km away from a 4C charge will have 12×10^6 J/C of....?. So what is this thing that has the units of J/C. You should recognize this as voltage, which we call electric potential. It is the same as what's made by a battery. So, what is J/C? It tells you, at this position, how many joules of energy is possible for every coulomb of charge placed at that position: it is the potential for energy, but not energy. If you know volts and coulombs, you know energy.

- 4 C 2μC 3 km
- 7. A 6 C charge is placed 3km to the right of a 4C charge.
 - A. What is the electric potential at the 6C charge's position?
 - B. What is the PE of the 6C charge at this position?
- 8. A. What is the electric potential everywhere on the 3km radius circle shown on the diagram (no direction—it is a scalar)?
 - B. Calculate the potential energy of the 2μC charge.

Now, using units, you should see that you can just multiply the electric field (N/C) by the charge (C) to calculate the force.

- 9. A point in space has an electric potential of 9V (J/C). How much energy does a 0.5 C charge have at that position?
- 10. A $12\mu C$ charge is placed where the electric potential is 0.25~V. What is the energy of the charge?
- 11. A 3μC charge has 9J of potential energy. What is the electric potential at that point?

- $F_e = k_c \frac{|q_1 q_2|}{r^2}$
- 1: 9/3 = 3and $10^9/10^3 = 10^6$ $= 3 \times 10^6$
- 2: r is in meters.
- 3: $F_{e}r = k_{c} \frac{|q_{1}q_{2}|}{r^{2}} r$ $PE = k_{c} \frac{|q_{1}q_{2}|}{r^{2}}$
- 4A. PE = 9E9(4)1/3E3 =
 Since 9E9/3E3 = 3E6,
 PE = (3E6)4(1)
 PE = 12×10⁶ Joules
- 4B: $12E6/1 = 12 \times 10^6 \text{ J/C}$
- 5A: = 3E6(2)(4) = 24E6 J(PE doubles if q doubles)
- 5B: $24E6/2C = 12 \times 10^6 \text{ J/C}$ hmmmm
- 6A: 3 times the charge = $3 \text{ times the energy} = 36 \times 10^6 \text{ J/C}$
- 6B: $36E6/3 = 12 \times 10^6 \text{ J/C}$

- 7A: 12×10^6 J/C (still)
- 7B: $(12E6J/C)(6C) = 72 \times 10^6 \text{ J}$
- 8A: 12×10⁶ J/C (Same q and same r) but no direction.
- 8B: (12E6J/C)(2E-6C) = $2(12)(10^6)(10^{-6}) =$ $24(10^0) = 24(1) =$ 24 J
 - $\frac{9 J}{1C} \left(\frac{0.5 C}{1} \right)$
- 9. = 4.5 J
- 10. (0.25J/C)12E-6C= 3E-6J
- 13. $3 \times 10^6 \text{ J/C}$

8μC

 \oplus

$$k_c = 9 \times 10^9$$
 $F_e = k_c \frac{|q_1 q_2|}{r^2}$ $E = k_c \frac{q_1}{r^2}$ $PE = k_c \frac{q_1 q_2}{r}$

Let's derive the equation for voltage (electric potential). We will use what we did on the front, where to find V we did PE/q.

12. A. Write the equation for electric potential energy over (divided by) q₂.

3µC

 \oplus

2 mm

B. q_2 is really $q_2/1$. Now remembering to multiply by the reciprocal, divide the force equation by q_2 and give the new equation for electric potential (voltage).

$$\frac{PE_e}{q_2} = \frac{\left(k_c \frac{|q_1 q_2|}{r}\right)}{q_2}$$

$$V = k_c \frac{q_1}{r}$$

13. A $3\mu C$ charge is 2 mm away from an $8\mu C$ charge.

A. With our new equation, calculate the electric potential at the
$$3\mu\text{C}$$
's position due to the $8\mu\text{C}$. (*Again*, *you don't need a calculator*.)

B. Using the electric potential, calculate the potential energy of the $3\mu C$ charge. (*No calculator.*)

$$V = k_c \frac{q_1}{r}$$

$$V = \frac{9 E 9 (8 E - 6)}{(2 E - 3)}$$

$$V = 9 E 9 (4 E - 3)$$

$$V = 3 6 \times 10^6 V$$

$$PE = (36 \times 10^{6} J/C)(3E-6C)$$

$$PE = [36(3)](10^{6})(10^{-6})$$

$$PE = [(30+6)3](10^{0})$$

$$PE = (90+18)(1)$$

$$PE = 108J$$