Understanding Electric Fields (2011-12 PreAP Electrostatics 3)

I need : Please	$F = k \frac{ q_1 q_2 }{ q_1 q_2 }$				
To help	p our disc	ussion and make	calcul	ations much easier, let's begin reviewing some math and prefixes.	r^2
1. A.	3μC =	B. 4k	:m =		$14 \cdot 3 \times 10^{-6} \text{C} \cdot 1 \text{B} \cdot 4 \times 10^{3} \text{m}$
2. In	the $F = kc$	$q_1 q_2/r^2$ equation 1	k =		$2 \cdot k = 9 \times 10^9$
3. A.	$10^3/10^4$ =	=	В.	$(10^9)/(10^6) =$	$3A: 10^{-1} 3B: 10^{3}$
4. A.	$(3 \times 10^3)^2$	=	В.	$9 \times 10^{9} / (3 \times 10^{3})^{2} =$	4A: 9×10 ⁶ 4B: 1×10 ³
5. So	o, k/(3km)	2 =			5: 1000 (units are not important here)
OI I k	K—the an mow that	swer for #5 is go a 1 C charge is l	oing to huge ar	be used a lot as we discuss what the electric field really is. In so is 1 km, but they make the math easy.	
4 C	3 km	1 C	6.	A 1C charge is 3 km from a 4C charge.	6A: $9E9(4)(1)/(3E3)^2 =$
\oplus		\oplus		A. Calculate the force between them.	(9E9/9E6)4 = 1000(4) = 4000 N
				B. Now divide this force by the 1 C charge.	6B: 4000/1 = 4000 N/C
1.0		2.0	7.	The 1 C charge is replaced with a 2 C charge.	7A: Again $k/(3km)^2 = 1000$
4 C	3 km	\oplus		A. Calculate the force between them.	So, $k(4)(2)/(3km)^2 =$ 1000(4)2 = 8000 N
				B. Now divide the force by the 2 C charge.	B. 8000/2 = 4000 N/C
4 C	3 km	3 C	8.	Then a 3C charge is placed 3km to the right of the 4C charge. A Calculate the force between them	8A: 1000(4)(3) = 12.000N
\oplus		\oplus			
				B. Divide the force by the 3 C charge.	8B: 12,000/4 = 4000N/C
You sho there is 3km aw of charg forces.	ould see th somethin vay from a ge placed So, the fo	nat in each case g the same abou 4C charge. It there. This is p ollowing question	the for at each tells yo powerfu ns shou	ce was different, but the second number was the same! Obviously of these situations. This common number (in N/C) is the electric field u that AT THIS POSITION there will be 4000N of force for every 1C ul information. By knowing the electric field, we can easily calculate and be easy.	
1.0			9.	A 6 C charge is placed 3km to the right of a 4C charge.	
4 C +	3 km	\oplus		A. What is the electric field at the 6C charge's position?B. What is the force on the 6C charge?	9A: 4000N/C (still) 9B: (4000N/C)(6C) = 24.000 N
			10.	A. What is the electric field strength everywhere on the 3km radius sphere shown on the diagram (include direction and notice μ C)?	10: 4000N/C (Same q and same r) and direction
	4 C			B. Calculate the force on the 2μ C charge.	is away (repel)
	3 km			Now, using units, you should see that you can just multiply the electric field (N/C) by the charge (C) to calculate the force.	
			11.	A point in space has an electric field strength of 12 N/C. How much force does a 0.5 C charge feel?	11. $\frac{12N}{1C}\left(\frac{0.5C}{1}\right)$
12 14	uC charg	a is placed in on	electri	c field of $1.5N/C$. What is the force on the charge?	= 6 N
12. 74	μe enaig	e is placed ill all	ciccul	e nerd of 1.51.90. What is the force on the charge?	12. $(1.5N/C)4\times10^{-6}C =$
12 4 2		1. ANT	W 71	and in the plantation field at an at the	OXIU N

13. A 2μ C charge feels 4N of force. What is the electric field strength?

Due Mon., Jan 30

13. 2×10^{6} N/C

$$F_e = k_c \frac{|q_1 q_2|}{r^2}$$
 and $k_c = 9 \times 10^9$

Let's return to the 4C charge example. Let's call the 4C charge q_1 , since it is the one that stays constant. Let's call the 2C charge q_2 . To find the electric field we divided the force by q_2 .

4 C ⊕	3 km	2 C ⊕	14.	A.	Write the equation for electric force over (divided by) q_2 .	$\frac{F_e}{q_2} = \frac{\left(k_c \frac{ q_1q_2 }{r^2}\right)}{q_2}$
				B.	q_2 is really $q_2/1$. Now remembering to multiply by the reciprocal, divide the force equation by q_2 and give the new equation for electric field.	$\frac{F_e}{q_2} = \left(k_c \frac{ q_1 q_2 }{r^2}\right) \frac{1}{q_2}$ $E = \left(k_c \frac{ q_1 }{r^2}\right)$
				Wh wit	ere q_1 is the charge setting up the field and q_2 is interacting h it to create a force.	
^{8μC}	2 mm	3μC ⊕	15.	A.	With our new equation, calculate the electric field at the 3μ C's position due to the 8μ C. (<i>You don't need a calculator</i> .)	$E = \left(k_c \frac{ q_1 }{r^2}\right)$ $E = \frac{9E9(8E-6)}{(2E-3)^2}$ $E = 18E9N/C$
				B.	Using the electric field strength, calculate the force on the 3μ C charge. (<i>Again, no calculator.</i>)	E = (18E9N / C)(3E - 6)

E = (18E9N / C)(3E - 6C) $E = [18(3)](10^{9})(10^{-6})$ $E = [(10 + 8)3](10^{3})$ $E = (30 + 24)(10^{3})$ E = 54E3E = 5.4E4N