I need you to follow along with this discussion, so I am going to put the answers on the right side of the page. Please cover it up and move your paper down as you go. If you choose to cheat, you will learn nothing.

To help our discussion and make calculations much easier, let's begin reviewing some math and prefixes.

1. A. $3 \mu \mathrm{C}=$
B. $4 \mathrm{~km}=$
2. In the $\mathrm{F}=\mathrm{kq}_{1} \mathrm{q}_{2} / \mathrm{r}^{2}$ equation $\mathrm{k}=$
3. A. $10^{3} / 10^{4}=$
B. $\left(10^{9}\right) /\left(10^{6}\right)=$
4. A. $\left(3 \times 10^{3}\right)^{2}=$
B. $9 \times 10^{9} /\left(3 \times 10^{3}\right)^{2}=$
5. So, $\mathrm{k} /(3 \mathrm{~km})^{2}=$

OK—the answer for \#5 is going to be used a lot as we discuss what the electric field really is.
I know that a 1 C charge is huge and so is 1 km , but they make the math easy.

6. A 1 C charge is 3 km from a 4 C charge.
A. Calculate the force between them.
B. Now divide this force by the 1 C charge.

8. Then a 3 C charge is placed 3 km to the right of the 4 C charge.
A. Calculate the force between them.
B. Divide the force by the 3 C charge.

You should see that in each case the force was different, but the second number was the same! Obviously there is something the same about each of these situations. This common number (in N/C) is the electric field 3 km away from a 4C charge. It tells you that AT THIS POSITION there will be 4000 N of force for every 1 C of charge placed there. This is powerful information. By knowing the electric field, we can easily calculate forces. So, the following questions should be easy.

9. A 6 C charge is placed 3 km to the right of a 4 C charge.
A. What is the electric field at the 6 C charge's position?
B. What is the force on the 6 C charge?
10. A. What is the electric field strength everywhere on the 3 km radius sphere shown on the diagram (include direction and notice $\mu \mathrm{C}$)?
B. Calculate the force on the $2 \mu \mathrm{C}$ charge.

Now, using units, you should see that you can just multiply the electric field (N/C) by the charge (C) to calculate the force.
11. A point in space has an electric field strength of 12 N/C. How much force does a 0.5 C charge feel?
12. A $4 \mu \mathrm{C}$ charge is placed in an electric field of $1.5 \mathrm{~N} / \mathrm{C}$. What is the force on the charge?
13. A $2 \mu \mathrm{C}$ charge feels 4 N of force. What is the electric field strength?

$$
F_{e}=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}}
$$

1A: $3 \times 10^{-6} \mathrm{C} ; 1 \mathrm{~B}: 4 \times 10^{3} \mathrm{~m}$
2: $\mathrm{k}=9 \times 10^{9}$
3A: $10^{-1} 3 \mathrm{~B}: 10^{3}$
4A: $9 \times 10^{6} 4 \mathrm{~B}: 1 \times 10^{3}$
5: 1000 (units are not important here)

6A: $9 \mathrm{E} 9(4)(1) /(3 \mathrm{E} 3)^{2}=$ (9E9/9E6) $4=$ $1000(4)=4000 \mathrm{~N}$

6B: $4000 / 1=4000 \mathrm{~N} / \mathrm{C}$

7A: Again $\mathrm{k} /(3 \mathrm{~km})^{2}=1000$ So, $\mathrm{k}(4)(2) /(3 \mathrm{~km})^{2}=$ $1000(4) 2=8000 \mathrm{~N}$
B. $8000 / 2=4000 \mathrm{~N} / \mathrm{C}$

8A: $1000(4)(3)=$
$12,000 \mathrm{~N}$
$8 B: 12,000 / 4=4000 \mathrm{~N} / \mathrm{C}$

9A: 4000N/C (still)
9B: $(4000 \mathrm{~N} / \mathrm{C})(6 \mathrm{C})=$ 24,000 N

10: 4000N/C (Same q and same r) and direction is away (repel)
11. $\frac{12 N}{1 C}\left(\frac{0.5 C}{1}\right)$
$=6 \mathrm{~N}$
12. $(1.5 \mathrm{~N} / \mathrm{C}) 4 \times 10^{-6} \mathrm{C}=$
13. $2 \times 10^{6} \mathrm{~N} / \mathrm{C}$

2011 PreAP Electrostatics 3-p2 $\quad F_{e}=k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}}$ and $k_{c}=9 \times 10^{9}$
Let's return to the 4C charge example. Let's call the $4 C$ charge q_{l}, since it is the one that stays constant. Let's call the $2 C$ charge q_{2}. To find the electric field we divided the force by q_{2}.
$4 \mathrm{C} \quad 3 \mathrm{~km} \quad 2 \mathrm{C}$

$8 \mu \mathrm{C}$	2 mm	$3 \mu \mathrm{C}$
\oplus		\oplus

B. q_{2} is really $\mathrm{q}_{2} / 1$. Now remembering to multiply by the reciprocal, divide the force equation by q_{2} and give the new equation for electric field.

$$
\begin{aligned}
& \frac{F_{e}}{q_{2}}=\frac{\left(k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}}\right)}{q_{2}} \\
& \frac{F_{e}}{q_{2}}=\left(k_{c} \frac{\left|q_{1} q_{2}\right|}{r^{2}}\right) \frac{1}{q_{2}} \\
& E=\left(k_{c} \frac{\left|q_{1}\right|}{r^{2}}\right)
\end{aligned}
$$

Where q_{1} is the charge setting up the field and q_{2} is interacting with it to create a force.
15. A. With our new equation, calculate the electric field at the $3 \mu \mathrm{C}$'s position due to the $8 \mu \mathrm{C}$. (You don't need a calculator.)
B. Using the electric field strength, calculate the force on the $3 \mu \mathrm{C}$ charge. (Again, no calculator.)

$$
\begin{aligned}
& E=\left(k_{c} \frac{\left|q_{1}\right|}{r^{2}}\right) \\
E & =\frac{9 E 9(8 E-6)}{(2 E-3)^{2}} \\
E & =18 E 9 N / C \\
E & =(18 E 9 N / C)(3 E-6 C) \\
E & =[18(3)]\left(10^{9}\right)\left(10^{-6}\right) \\
E & =[(10+8) 3]\left(10^{3}\right) \\
E & =(30+24)\left(10^{3}\right) \\
E & =54 E 3 \\
E & =5.4 E 4 N
\end{aligned}
$$

