
Due Wed., Feb 15

2011-12 PreAP Electrostatics 15

Х	у	y h
1	2	10 + 8 +
2	4	6+
3	6	4 +
4	8	2 +
5	10	II 1 2 3 4 5 X

у
1
4
9
16
25

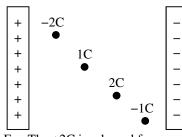
Function:

Function:

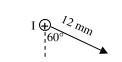
- 1. Graph the data tables on the given graphs. Notice the shapes.
- * Given the following possible functions: y = mx + b; $y = x^2$; y = 1/x; $y = \sqrt{x}$ Look at the data tables and decide which function is which. It is can be as simple as figuring out how you get the y-values from the x-values. Write the given functions under the correct table/graph.

It turns out that $1/x^2$ looks pretty close to a 1/x graph, so put this possibility under that graph, as well.

3. Now that we remember that graph shapes, answer the following questions. Notice the equations at the left.

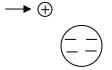

$$F_e = k_c \frac{q_1 q_2}{r^2}$$
 $E = k_c \frac{q_1}{r^2}$

 $F_e = k_c \frac{q_1 q_2}{r^2}$ $E = k_c \frac{q_1}{r^2}$ A. Which graph above (I, II, or III) would be Electric Force vs. distance (r)?


$$PE = k_c \frac{q_1 q_2}{r} \qquad V = k_c \frac{q_1}{r}$$

$$PE = k_c \frac{q_1 q_2}{r} \qquad V = k_c \frac{q_1}{r}$$

- $PE = k_c \frac{q_1 q_2}{r}$ $V = k_c \frac{q_1}{r}$ C. Which graph would be Electric Potential vs. Force? $PE = \frac{1}{2} |Q| \Delta V$ $C = \varepsilon_0 \frac{A}{d}$ D. In a constant electric field $\Delta PE = -qEd$. Which graph PE vs. d in a constant electric field? D. In a constant electric field $\Delta PE = -qEd$. Which graph shows change of
- 4. Four charges are between the plates of a parallel plate capacitor. Assume the charges are far from the edges.


- A. Draw the electric field between the plates.
- B. Which charge feels the greatest electric field?
- C. Which charge feels more magnitude of force: the +2C or -2C charge?
- D. Which charge has the greatest potential?
- E. Write Newton's Second Law:
- The +2C is released from rest.
 - Which way does it go and is this with the field?
 - Does it move speed up, slow down, or stay at constant speed?
 - iii. Does it gain or lose potential energy?
 - iv. Does it gain or lose potential?
- G. If released from rest, describe the motion of the -2C charge (include the above items).
- A +3C charge is moved in a uniform electric field that has a field strength of 500 N/C.

- A. Calculate the distance it moves parallel to the field.
- B. Which direction does the electric field point?
- Calculate the ΔPE of the charge.
- D. Since electric field is also in V/m and the plates are separated by 18mm, calculate the voltage of the plates.
- E. If this is a 6μF capacitor, how much charge is held on it?

- Q1,2: Graph I is 1/x, Graph II is linear (y = mx)Graph III is $y = x^2$
- 3A Graph I (F ↓ as
- B..Graph II (F † as q\u221, but linearly)
- C. n/a not related
- D. Graph II, linear
- A. + to -
- B. Same for all (parallel E)
- C. Same (opp dir)
- D. -2C (closest to + plate: about posit)
- E. F = ma
- Fi. With E, right
- Fii. Speed up
- Fiii lose
- Fiv. Lose (toward plate)
- G—figure it out.
- 5A: 12cos60°
- $= 6 \, \text{mm}$
- 5B. Down 5C: = -qEd =
- -(3)(-500)(-.006)
- = -9 J
- D. 500 V/m, so (500V/1m)(.018m)
- = 9V
- E. (6E-6C/V)9V
- = 5.4E-5 C

- 6. A parallel plate capacitor has a capacitance of $4\mu F$ and hold $8\mu C$ of charge on one plate.
 - A. What is the net charge of the capacitor?
 - B. What is the stored potential energy?

- 7. A small positive charge is moving toward a massive negatively charge cyclotronic generator. Draw the path of the positive charge.
- 6A. You should know this = 0 C (always)
- 6B. $PE = \frac{1}{2}QV$ and and a farad = C per volt. Find V first. V = 2v, so PE = 8E-6joules
- 7. Opposites ALWAYS attract, so it will curve toward the neg charged object, whatever it is.