2011-12 PreAP Electrostatics 1

1) From the diagram at the left.

A. ___ A proton
B. An electron

C. ____* A neutron D. ____ The nucleus

2) * Which of the subatomic particles in the atom is easily removed?

3) So, when charges move it is almost always the __

A) (+)

(+)

that are moving.

Attract or Repel?

- 4) Opposites attract and like charges repel.
 - A) Two protons will:
 - B) Two electrons will:
 - C) An electron and a proton will:
- 5) For each of the pairs of charges, will they attract or repel each other:
- (-

Attract or Repel?

- C)
- $\overline{}$
- (-)

Attract or Repel?

6) A particle is shot between the charged plates of a capacitor. The path the particle will take depends on its charge. Determine the charge for each path.

A. * Path R:

- B. Path S:
- C. Path T:
- 7) For the three spheres shown below, count up the number of +s and and decide if the net charge of the sphere is positive (+), negative (-), or neutral (0).

8) For the next four examples decide the net charge of the object.

D) ____ An object with 2 protons and 4 electrons

F) ____ * An object that loses electrons.

E) ____ An object with 18 protons and 16 electrons

G) ____ An object that gains electrons.

- 9) A piece of rabbit fur is rubbed against a rubber rod. The rubber rod becomes negative. Did the rubber rod gain or lose electrons?
- 10) * So, how do objects become positive?
- 11) How do objects become negative?

We know (from the homework "PreAP Circuits 11") that 1 electron (e) = -1.6×10^{-19} C and 1 proton = $+1.6 \times 10^{-19}$ C. Therefore: $\left(\frac{1e}{-1.6 \times 10^{-19}\text{C}}\right)$ OR $\left(\frac{-1.6 \times 10^{-19}\text{C}}{1e}\right)$ Again, use the units. If you need coulombs, put coulombs on top, etc.

- 12) * Calculate the charge of 14 electrons.
- 13) * Remembering that μ means: "×10⁻⁶", how many electrons is 1.36 μ C?
- 14) A metal sphere has a charge of –4C. It is touched to another metal sphere that is neutral to begin with.
 - A. Are the spheres conductors or insulators?
 - B. Will they allow electrons to flow?
 - C. Will the electrons attract or repel each other?
 - D. Will the electrons want to stay together or spread apart as far as possible?
 - E. * What will be the charge of the right sphere afterwards?

The new equation at the right looks a lot like the gravity equation. Both of them are field forces and are $1/r^2$ laws: known as inversesquare laws. Please note the absolute value symbol on top. This equation gives you the MAGNITUDE (size) of the electric force. You decide on the direction (attract; repel; left; right; 34° ; etc.) by looking at the situation.

- 15) How does the electric force change?
 - A. * If one of the charges is doubled?
 - B. * If the distance is tripled?
 - C. If one of the charges is 1/3rd as big?
 - D. If the distance is halved?

Remember that in your calculate 4×10^{12} is 4E12. Also, there are 1000mm in a m.

- 16) * Calculate the force between a 4 µC charge and a 8 µC charge that are 3.2 mm apart. (Be sure to say "attract" or "repel".)
- 17) Calculate the force between a 1.2 μ C charge and a –4.8 μ C charge that are 2.5 mm apart.
- 1C) Neutron is III 2) electrons (they are not bound in the nucleus by the strong nuclear force)
- 6A) + 7B) 8F) +
- 10) by losing electrons
- $12) -2.24 \times 10^{-18}$ C $13) -8.5 \times 10^{12}$ e. The neg means you lost electrons, which you already knew since the object was pos.
- 14E) 2C
- $15A) \times 2$ 15B) 1/9 the force
- 16) = 2.81×10^4 N repelling (in your calculator should look like this: $9E9*4E-6*8E-6/3.2E-3^2$)