x	y								
1	1								
2	0.5								
3	0.333								
4	0.25								
5	0.2								

Function: \qquad

x	y
1	2
2	4
3	6
4	8
5	10

x	y
1	1
2	4
3	9
4	16
5	25

Function: \qquad Function: \qquad

1. Graph the data tables on the given graphs. Notice the shapes.
2. $*$ Given the following possible functions: $\mathrm{y}=\mathrm{mx}+\mathrm{b} ; \mathrm{y}=\mathrm{x}^{2} ; \mathrm{y}=1 / \mathrm{x} ; \mathrm{y}=\sqrt{x}$ Look at the data tables and decide which function is which. It is can be as simple as figuring out how you get the y-values from the x-values. Write the given functions under the correct table/graph.

It turns out that $1 / x^{2}$ looks pretty close to a $1 / x$ graph, so put this possibility under that graph, as well.
3. Now that we remember that graph shapes, answer the following questions. Notice the equations at the left.
$F_{e}=k_{c} \frac{q_{1} q_{2}}{r^{2}} \quad E=k_{c} \frac{q_{1}}{r^{2}}$
A. Which graph above (I, II, or III) would be Electric Force vs. distance (r)?
B. Which graph would be Electric Field vs. charge?
$P E=k_{c} \frac{q_{1} q_{2}}{r} \quad V=k_{c} \frac{q_{1}}{r}$
C. Which graph would be Electric Potential vs. Force?
D. In a constant electric field $\Delta \mathrm{PE}=-\mathrm{qEd}$. Which graph shows change of PE vs. d in a constant electric field?
4. Four charges are between the plates of a parallel plate capacitor. Assume the charges are far from the edges.

$$
\begin{array}{|ccccc|c|}
\hline+ & -2 \mathrm{C} & & & & - \\
+ & \bullet & & & & \begin{array}{l}
- \\
+ \\
+ \\
+ \\
+ \\
+ \\
+
\end{array} \\
& & 1 \mathrm{C} & & & - \\
- & & 2 \mathrm{C} & & - \\
- \\
& & & & -1 \mathrm{C} & - \\
- \\
\hline
\end{array}
$$

A. Draw the electric field between the plates.
B. Which charge feels the greatest electric field?
C. Which charge feels more magnitude of force: the +2 C or -2 C charge?
D. Which charge has the greatest potential?
E. Write Newton's Second Law:
F. The +2 C is released from rest.
i. Which way does it go and is this with the field?
ii. Does it move speed up, slow down, or stay at constant speed?
iii. Does it gain or lose potential energy?
iv. Does it gain or lose potential?
G. If released from rest, describe the motion of the -2 C charge (include the above items).
5. A +3 C charge is moved in a uniform electric field that has a field strength of $500 \mathrm{~N} / \mathrm{C}$.

A. Calculate the distance it moves parallel to the field.

B. Which direction does the electric field point?
C. Calculate the $\triangle \mathrm{PE}$ of the charge.
D. Since electric field is also in V / m and the plates are separated by

Q1,2: Graph I is $1 / x$, Graph II is linear ($\mathrm{y}=\mathrm{mx}$) Graph III is $y=x^{2}$

3A Graph I (F \downarrow as $\mathrm{r} \uparrow$)
B..Graph II ($\mathrm{F} \uparrow$ as
$\mathrm{q} \uparrow$, but linearly)
C. n/a not related
D. Graph II, linear
A. + to -
B. Same for all (parallel E)
C. Same (opp dir)
D. -2 C (closest to + plate: about posit)
E. $\quad \mathrm{F}=\mathrm{ma}$

Fi. With E, right
Fii. Speed up
Fiii lose
Fiv. Lose (toward plate)
G-figure it out.

5A: $12 \cos 60^{\circ}$
$=6 \mathrm{~mm}$
5B. Down
$5 \mathrm{C}:=-\mathrm{qEd}=$
$-(3)(-500)(-.006)$
$=-9 \mathrm{~J}$
D. $500 \mathrm{~V} / \mathrm{m}$, so
($500 \mathrm{~V} / 1 \mathrm{~m})(.018 \mathrm{~m})$
$=9 \mathrm{~V}$
E. $(6 \mathrm{E}-6 \mathrm{C} / \mathrm{V}) 9 \mathrm{~V}$
$=5.4 \mathrm{E}-5 \mathrm{C}$
6. A parallel plate capacitor has a capacitance of $4 \mu \mathrm{~F}$ and hold $8 \mu \mathrm{C}$ of charge on one plate.
A. What is the net charge of the capacitor?
B. What is the stored potential energy?
7. A small positive charge is moving toward a massive negatively charge cyclotronic generator. Draw the path of the positive charge.

6A. You should know this $=0 \mathrm{C}$ (always)

6B. $\mathrm{PE}=1 / 2 \mathrm{QV}$ and and a farad $=\mathrm{C}$ per volt. Find V first. $V=2 \mathrm{v}$, so $P E=8 E-6 j o u l e s$
7. Opposites ALWAYS attract, so it will curve toward the neg charged object, whatever it is.

