Calculating net E, F, PE, and V p 2

1. Calculate the four electrostatic quantities (E, F, PE, and V) 3 mm from a $5 \mu \mathrm{C}$ charge, as shown in the diagram. Be sure to give direction, if necessary. Some may be zero. Notice, keeping r constant produces a sphere that is 3 mm away from the $5 \mu \mathrm{C}$ charge. This means E, F, PE, and V will have particular values everywhere on that sphere.

2. Calculate the four electrostatic quantities 4 mm from an $8 \mu \mathrm{C}$ charge, as shown in the second diagram. Again, everywhere equidistant from the charge will have the same E, F, PE, and V.

3. The two charges are then brought close to each other. Obviously, their spheres intersect at a few points (two should be obvious). Each of these points is 3 mm from one and 4 mm from the other. We will call one of these intersections points P. Using the numbers you found in Q1 and 2, calculate the net E, F, PE, and V at point P due to both charges. Again, some may be zero.
B. How much work was done to move the charge to point P from infinity?
4. A $1.5 \mu \mathrm{C}$ charge is then brought to point P from infinity. The spheres have been removed to make the diagram easier to read.
A. Again, using your previous numbers, calculate the four electrostatic quantities for this charge at point P.
5. The $1.5 \mu \mathrm{C}$ charge is then replaced with a $3 \mu \mathrm{C}$ charge.
A. How would the electric field at P change?
B. How would the force at P change?
C. How would the electric potential (V) at P change?
D. How would the potential energy at P change?
C. If released from rest, which way will the $1.5 \mu \mathrm{C}$ move?
D. If a negative charge was put at P, which way would it move?

Name:
Period: Calculating net $E, F, P E$, and V page 2

1. Calculate the four electrostatic quantities (E, F, PE, and V) 3 mm from a $5 \mu \mathrm{C}$ charge, as shown in the diagram. Be sure to give direction, if necessary. Some may be zero. Notice, keeping r constant produces a sphere that is 3 mm away from the $5 \mu \mathrm{C}$ charge. This means $\mathrm{E}, \mathrm{F}, \mathrm{PE}$, and V will have particular values everywhere on that sphere.

2. Calculate the four electrostatic quantities 4 mm from an $8 \mu \mathrm{C}$ charge, as shown in the second diagram. Again, everywhere equidistant from the charge will have the same E, F, PE, and V.

obuausly are still 0 , simce there is no q at Point P. $U_{\text {net }}$ is scalar, so just add $=(1,8+1,5) 10^{7}$

$$
\begin{aligned}
&=3.3 \times 10^{75} / \mathrm{c} \\
& \vec{E}_{\text {net }} \text { is a vector, } 50 \\
& \vec{E}=\sqrt{5^{2}+4.5^{2}} \\
&=6.7 \times 10^{9} \mathrm{~N} / \mathrm{c} \\
& \mathrm{E} \theta=\tan ^{-1}\left(\frac{-5}{4.5}\right)=-48^{\circ}
\end{aligned}
$$

$$
\text { and since } x \text { and } y \text { are olmost }=\theta \text { must be close to } 45^{\circ}
$$

4. A $1.5 \mu \mathrm{C}$ charge is then brought to point P from infinity. The spheres have been removed, only to make the diagram cleaner.
A. Again, using your previous numbers, calculate the four electrostatic quantities for this charge at point P. $1.005 \times 10^{4} \mathrm{~N}$ at -48°

$$
\begin{aligned}
& q=3.3 \times 10 \quad \frac{}{c}(1.5 M \mathrm{c}) \\
& P E=49.5 \mathrm{~J} \quad\left(\text { vstill }=3.3 \times 10^{75} / \mathrm{c}\right)
\end{aligned}
$$

C. If released from rest, which way will the $1.5 \mu \mathrm{C}$ move? from infinity?

$$
\begin{aligned}
& 49.5 \mathrm{~J} \text { (and will have } 49.5 \mathrm{~J} \text { of } \\
& \text { KE after it is reliased) }
\end{aligned}
$$

D. If a negative charge was put at P, which way would it move? - charges go the opposite direction of E (toward the 2nd Q)

$$
\begin{aligned}
& \vec{E}_{\text {net }}=6.7 \times 10^{9} \frac{\mathrm{~N}}{\mathrm{c}} \\
& \text { mult. by } C \text { to get } N \text { : } \\
& \begin{array}{l}
50 \vec{F}=q E \\
\left(\frac{-7 \times 10^{9} \mathrm{~N}}{12}\right)^{1,5 \mu L} 1
\end{array}
\end{aligned}
$$

5. The $1.5 \mu \mathrm{C}$ charge is then replaced with a $3 \mu \mathrm{C}$ charge.
A. How would the electric field at P change?

No D, simce the $8 \mu<+5 \mathrm{~m} L$ haven't changed
B. How would the force at P change?
doubles:F=qE and q doubled
C. How would the electric potential (V) at P change? no Δ
D. How would the potential energy at P change? doubles
6. The $5 \mu \mathrm{C}$ charge is changed to a $-5 \mu \mathrm{C}$ charge. Describe any

$$
\begin{aligned}
& \text { changes that will occur on the charge at } P \text {. } \\
& \vec{E} \text { has same mag, but toward } Q . \\
& \vec{F} \text { is same mag }(\text { same } \vec{E}) \text { at }+48^{\circ} \\
& V \text { in } Q 1 \text { is now neg, } 50 \\
& U_{n c t}=\left(-1.5 \times 10^{7}\right)+\left(1.8 \times 10^{7}\right)=3 \times 10^{6} \mathrm{~J} / \mathrm{c} \\
& \text { so } P E=Q V=1.5 \mu C\left(3 \times 10^{\circ}\right)=4.5 \mathrm{~J}
\end{aligned}
$$

