\qquad
Period: \qquad

4. A $1.2 \mu \mathrm{C}$ charge is then brought to point P from infinity.
A. Again, using your previous numbers, calculate the four electrostatic quantities for this charge at point P.
B. How much work was done to move the charge to point P from infinity?
5. Now the negative charge is moved to the positive y-axis. Using the same individual numbers you calculated in Q2 and $Q 3$, calculate the four quantities at point P.
6. A. Which way will the $1.2 \mu \mathrm{C}$ charge move when released?
B. If a negative charge was put at P , which way would it move?

Name: \qquad
Period: \qquad
remember to use a + test charge

$$
\begin{aligned}
& \vec{E}=\frac{k\left(7 \times 10^{-6}\right)}{(3 E-3)^{2}}=7 \times 10^{9 \frac{\mathrm{~N}}{\mathrm{C}}} \text { to Right } \\
& \text { 1. }
\end{aligned} \begin{aligned}
& \text { Calculate the four electrostatic quantities (E, F, PE, } \\
& \text { position } 3 \mathrm{~mm} \text { to the right of a } 7 \mu \mathrm{C} \text { charge. Be sure } \\
& \text { direction for vectors. Some quantities may be zero. }
\end{aligned}
$$

3 mm

$$
\begin{aligned}
& \vec{E}=\frac{k(5 M c)}{(5 \mathrm{~mm})^{2}}=1.8 \times 10^{9 \mathrm{~N} / \mathrm{c}} \text { pos.+0st charge right } \\
& V=E r=(1,8 E 9)(5 E-3)=-9 \times 10^{6} \mathrm{~J} / \mathrm{c} \text { (no direction) } \\
& P E=\vec{F}=0 \text { (only } 1 q \text {) }
\end{aligned}
$$

2. Calculate the four electrostatic quantities at a point 5 mm to the left of a $-5 \mu \mathrm{C}$ charge.

A. Again, using your previous numbers, calculate the four electrostatic quantities for this charge at point P.
Just use net U and net E, which don't change

$P E$ is in J , $50 P E=q V$, $50\left(1.2 \times 10^{7} \frac{\mathrm{~J}}{\mathrm{c}}\right)\left(1.2 \times 10^{-6} \mathrm{C}\right)$
B. How much work was done to move the charge to point P from infinity?
$P E=K E=\omega=14.4 \mathrm{~J}$
3. Now the negative charge is moved to the positive y-axis.

Using the same individual numbers you calculated in Q2 and Q3, calculate the four quantities at point P.
Easiest to calculate Vnet and Enet, then just multiply by
the q at point P. That way you don't have to do pyth and inverse tan twice.
$U_{\text {met }}=$ same, since $\quad \begin{aligned} & F=2160 \mathrm{~N}\end{aligned}$
it is a scalar and dir. $5 \mathrm{~mm} \quad V=-9 \times 10^{6} \mathrm{~J} / \mathrm{C}$
$\begin{aligned} & \text { doesn'tmatter } \\ & \text { Vnet }=1,2 \times 10^{7} \mathrm{~J} / \mathrm{C}\end{aligned} \quad \hat{p u l l}\left(\overrightarrow{E_{n e t}}\right)^{2}=(1.8 E 9)^{2-}+(7 E 9)^{2}\left(c\right.$ ando withoot exponents. All are $\left.\times 10^{9}\right)$

and is also $\quad \mathrm{P} \quad \theta=\tan ^{-1}(y / x)=14.4 \quad[N]=[c][1 / c]$
a scalar, it
stays same
$=14.4 \mathrm{~J}$
6. A. Which way will the $1.2 \mu \mathrm{C}$ charge move when released?
$v=2.1 \times 10^{7 \mathrm{~J} / \mathrm{C}} \quad E_{7}$
$F=8400 \mathrm{~N}$
cstephenmurray.com
so insterd of $F_{\text {net }}=q E_{\text {net }}$ use $\vec{F}_{\text {net }}=\sqrt{F_{1}^{2}+F_{2}^{2}}=$
$\angle 14.4+180=194.4^{\circ}$, negs move opp. dir. of electric field
$\sqrt{8400^{2}+2160^{2}}=8680 \mathrm{~N}$ (same as above)

