PreAP Electrostatics 5

Yoı Pot uni	a should already know that Electric Forces (like all forces) and Electric Fields are vectors and that Electric tential Energy (like all energy) and Electric Potential (voltage) are scalars. You should also know their ts and that anything that is per C (N/C or J/C) is about the position, not the charge at that position.		$F_e = k_c \frac{ q_1 q_2 }{r^2}$
Let	's start with some unit stuff.		
1.	A 6C charge is at a position that has an electric potential of 0.5 V. A. How much potential energy does it have?	1A.	(0.5J/C)6C = 3 J
	B. If it is released from this position, how much kinetic energy would it have after a long time?	1B:	3 J. PE = KE = W
2.	A -0.2C charge is placed at a point in space that has a 4 N/C electric field. A. How much force does it feel?	2A:	(4N/C)(0.2C) = 0.8 N (mag only)
3.	B. If released, does it move with or against the field?15 J of work is necessary to bring a 3 C charge to a particular position.	2B:	* against (opp) field since E is direction
	A. What is the electric potential (voltage) at that position?	24.	a + q would move.
	P How much kinatia anarow will it gain often it is released?	SA:	13J/3C = 3J/C
	b. How much kinetic energy with it gain after it is released?	2D.	= 5 volts
4	A +5C charge feels 2.5 N of force when it is at a particular position	эв.	13 J (KE = W)
	A. What is the electric field strength at that position?	4A:	2.5N/5C = 0.5 N/C
	B. If released, will the charge move with or against the field?	4B:	E is what + charge would move, so "with the field"
	Let's reinforce the ideas of scalar and vector and the direction of E. (The numbers are made up.)		
5.	The diagram below gives the Electric Field strengths and Electric Potential for a given point between two charges.		
(+	4N/C $3N/C$ A. To find the direction of the electric field put a small + test charge at the point and draw the direction it would move to the other charges.	5A:	It is a push from the left charge and a pull from the right charge.
(+	8 V $-5V$ B. Calculate the net electric field at the point (and give direction).	5B:	7 N/C to the right (add them together, since both are to right)
	C. Calculate the net electric potential at the point.	5C:	8–5 = 3 Volts (no direction: scalar)
6.	The sign of the right charge is changed, as shown. Notice the magnitudes stay the same.		
\bigcirc	4N/C $3N/C$ A. Again, using a + test charge to decide direction, draw the electric fields pushing or pulling at the point, due to the other charges.	6A:	Push from left; push from right
(+)	$_{8 \text{ V}}$ $_{5 \text{V}}$ $_{5 \text{V}}$ $_{5 \text{V}}$ $_{8 \text{ Calculate the net electric field at the point (and give direction).}$	6B:	1N/C to the right (4 is > 3), so $+4-3 = +1$ (and + is to the right)
	C. Calculate the net electric potential at the point.	6C:	8+5 = 13 V
	7. The right charge is now moved directly below the point.	7A:	E _{net}
(+	4 N/C A. Draw the individual electric fields pushing or pulling at the point. Then draw the direction of the net field.		
	8 V 5V 3N/C 5V 3N/C	7B:	3,4, 5 triangle, so 5N/C $\theta = \tan^{-1}(y/x) =$ = 36.9°
	(+) C. Calculate the net electric potential at the point.	7C.	8 + 5 = 13 V (don't ya just love scalars!?!)

PreAP Electrostatics 5—p2

8.

$$F_{e} = k_{c} \frac{|q_{1}q_{2}|}{r^{2}}$$
 $E = k_{c} \frac{q_{1}}{r^{2}}$ $PE = k_{c} \frac{q_{1}q_{2}}{r}$ $V \neq k_{c} \frac{q_{1}}{r}$

Let's now learn better how to move between the four electrostatic equations. (And units may also help.) How do you get the electric field equation from the force equation?

- 9. How can you easily calculate the electric potential (voltage) given the electric field?
- 10. How do you calculate the potential energy from the force?
- 11. Given E, how do you calculate F?

Remembering that $\mu C = \times 10^{-6}C$, $mm = \times 10^{-3}m$ and $k = 9 \times 10^{9}$...

12. Two charges are separated as shown below. (Answers below [I needed more room.])

A. Calculate the electric field at the position of the $3\mu C$ charge.

8μC	3 mm	3µC		
\oplus		\oplus	B. Calculate the force on the 3μ C charge.	

- C. Calculate the voltage of the 3μ C charge's position.
- D. Calculate the potential energy of the 3μ C charge.

12A)
$$E = k_c \frac{|q_1|}{r^2} = \frac{|9E9(8E-6)|}{(3E-3)^2} = 8E9 N / C$$

12B)
$$F_e = k_c \frac{|q_1q_2|}{r^2}$$
 $Fe = \frac{9E9(8E-6)(3E-6)}{(3E-3)^2} = 2.4 \times 10^4 N$ or $F_e = qE = C(N/C) = 8E9(3E-6) = 2.4E4N$

^{12C)}
$$V = k_c \frac{q_1}{r} = \frac{9E9(8E-6)}{(3E-3)} = 2.4E7 \text{ J/C}$$
 $OR \text{ V} = \text{E}(r) = 8E9(3E-3) = 2.4E7 \text{ J/C}$

^{12D)}
$$PE = k_c \frac{q_1 q_2}{r} = \frac{9E9(8E-6)(3E-6)}{(3E-3)} = 72J$$
 $OR PE = qV = (3E-6)(2.4E7) = 72J$

* Explanation to 2B: Electric fields are defined by the direction a + test charge would move. A negative charge would go the opposite way. On 2B, just because it is a negative charge, you know it will move against the field. The 4N/C is the strength of the electric field a certain distance (r) from a charge. You don't know if the charge creating the field is + or -, just the strength at that point. It could be pointing toward a -q or away from a +q. The -0.2C charge will then either go away from a -q or toward a +q, opposite the direction of the field.

cstephenmurray.com

Copyright © 2013, C. Stephen Murray

- 8. divide by the q at the given position
- 9. Mult by r
- 10. Mult by r
- 11. Mult by the q at the given position