PreAP Electrostatics 1

1) From the diagram at the left.
A. __ A proton
C. \qquad * A neutron
B. \qquad An electron
D. ___The nucleus
2) * Which of the subatomic particles in the atom is easily removed?
3) So, when charges move it is almost always the \qquad that are moving.

Attract or Repel?
B) $\quad-$

Attract or Repel?
4) Opposites attract and like charges repel.
A) Two protons will:
B) Two electrons will:
C) An electron and a proton will:
5) For each of the pairs of charges, will they attract or repel each other:
C) - Attract or Repel?

6) A particle is shot between the charged plates of a capacitor. The path the particle will take depends on its charge. Determine the charge for each path.
A. * Path R:
B. Path S :
C. Path T:
7) For the three spheres shown below, count up the number of +s and - and decide if the net charge of the sphere is positive $(+)$, negative $(-)$, or neutral (0).
A)

B) *

C)

8) For the next four examples decide the net charge of the object.
D) ___ An object with 2 protons and 4 electrons F) ___ * An object that loses electrons.
E) ___ An object with 18 protons and 16 electrons
G) ___ An object that gains electrons.
9) A piece of rabbit fur is rubbed against a rubber rod. The rubber rod becomes negative. Did the rubber rod gain or lose electrons?
10) * So, how do objects become positive?
11) How do objects become negative?

We know (from the homework "PreAP Circuits 5") that 1 electron $(e)=-1.6 \times 10^{-19} \mathrm{C}$ and 1 proton $=+1.6 \times 10^{-19} \mathrm{C}$.
Therefore: $\left(\frac{1 \mathrm{e}}{-1.6 \times 10^{-19} \mathrm{C}}\right)$ OR $\quad\left(\frac{-1.6 \times 10^{-19} \mathrm{C}}{1 \mathrm{e}}\right)$ Again, use the units. If you need coulombs, put coulombs on top, etc.
12) * Calculate the charge of 14 electrons.
13) * Remembering that μ means: " $\times 10^{-6}$ ",
how many electrons is $1.36 \mu \mathrm{C}$?
14) A metal sphere has a charge of $-4 C$. It is touched to another metal sphere that is neutral to begin with.
A. Are the spheres conductors or insulators?
B. Will they allow electrons to flow?
C. Will the electrons attract or repel each other? So the electrons will spread apart as far as possible.
D. * What will be the charge of the right sphere afterwards?

(2)

The new equation at the right looks a lot like the gravity equation. Both of them are field forces and are $1 / r^{2}$ laws: known as inversesquare laws. Please note the absolute value symbol on top. This equation gives you the MAGNITUDE (size) of the electric force. You decide on the direction (attract; repel; left; right; 34 ; etc.) by looking at the situation. Also, remember that in your calculate 4×10^{12} is $4 E 12$ and that there are 1000 mm in a m. ALSO: \boldsymbol{r} can never be negative.

16) Calculate the force between a $1.2 \mu \mathrm{C}$ charge and a $-4.8 \mu \mathrm{C}$ charge that are 2.5 mm apart.
17) Let's remember how proportionality works. In the following table calculate the electric force for each of the situations. This is for comparison, so you don't need to fully calculate your answers, so leave " k_{C} " in your answer.

Situation	$\mathrm{q}_{1}=$	$\mathrm{q}_{2}=$	$\mathrm{r}=$	$\mathrm{F}_{\mathrm{e}}=$ (keep k_{c} in the equation)
1. control	1	1	1	$F_{e}=k_{C} \frac{q_{1} q_{2}}{r^{2}}=k_{C} \frac{1(1)}{1^{2}}=k_{C} \frac{1}{1}=1 k_{C}$
2. double the charge	2	1	1	
3. half the charge	1	0.5	1	
4. double the distance	1	1	2	
5. half the distance	1	1	.5	

18) How does the electric force change?
A. * If one of the charges is doubled?
B. * If the distance is tripled?
C. If one of the charges is $1 / 3$ rd as big?
D. If the distance is halved?

1C) Neutron is III 2) electrons (they are not bound in the nucleus by the strong nuclear force)
$6 \mathrm{~A})+7 \mathrm{~B})-$
10) by losing electrons
12) $-2.24 \times 10^{-18} \mathrm{C}$ 14D) -2 C
15 A) $\times 2$
15B) $1 / 9$ the force
16) $=2.81 \times 10^{4} \mathrm{~N}$ repelling (in your calculator should look like this: $9 \mathrm{E} 9 * 4 \mathrm{E}-6 * 8 \mathrm{E}-6 / 3.2 \mathrm{E}-3^{2}$)

18A) q is on top, so doubling q doubles F
18B) r is squared and on the bottom, so tripling r makes (1/9)F

