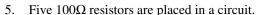
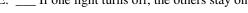

B-Day: Due Wed., Feb 17 A-Day: Due Thurs., Feb 18

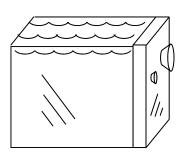
2009-10 PreAP Circuits 4


- 1. After working the circuit at the right, answer the following.
 - A. Calculate the current flowing thru the circuit.
 - B. If one of the resistors is replaced by a wire, how will the current change?
 - C. If a third battery is added to the circuit, how will the current change?
 - D. How much current is flowing thru the 100Ω resistor?
 - E. How much voltage is used by the 100Ω resistor?
 - F. How much power is used by the 100Ω resistor?
 - G. Calculate how much voltage is left at point E.
 - H. On the diagram, calculate the voltage used by the other two resistors.
 - How does the voltage drop across R_1 compare with R_2 ?
 - How does the resistance of R_1 compare with R_2 ?
 - K. How does the voltage drop across R_2 compare with R_3 ?
 - L. How does the resistance of R_2 compare with R_3 ?
 - M. Calculate the power used by the other two resistors
 - N. How much power does the whole circuit use?

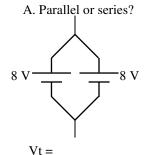


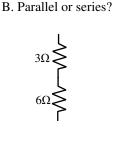
- 2. Now, using what you learned from parts I-L above,
 - A. How much voltage is used by the 150Ω ?
 - B. What is the voltage of the battery?
 - C. How much current is flowing?
- Series or parallel? (Using your lab notes or the "Types of Circuits" notes)
 - A.___Only one path for the electricity to flow.
 - B. Paths are dependent on each other (one affects the other).
 - C.____How your house is wired.
 - D.____Paths are independent of each other.
- E. ___ If one light turns off, the others stay on.
- F. ___ If you turn off one light, all the lights turn off.
- G. ___ Has more than one path for the electricity to flow.
- H. ___ Two devices have the same current.

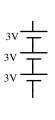
- The holes at the right are pipes.
 - A. Are the four holes in parallel or series, as shown?
 - B. Together is there a bigger hole or a smaller hole for water to flow thru?
 - C. Each pipe can allow 2 gal/sec, how much can flow thru them together?
 - D. So, is the resistance increasing or decreasing? This is why 4 equal resistors in parallel are the same as a single resistor that is 1/4th as big.



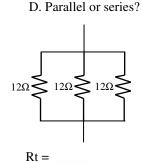
- A. What is the total resistance if they are in series?
- B. What is the total resistance if they are in parallel?


- I. ___ Two devices have the same voltage.





- Imagine a large tank of water. In one side of the tank are two holes with plugs in them: a large hole and a small hole.
 - A. When removed, which hole will have more resistance?
 - B. Which hole will have more water flowing (current) thru it?
 - C. Water, like electricity, always takes the path of:


7. Decide if the following are in parallel or series and find the total voltage or total resistance. (See "Types of Circuits")



C. Parallel or series?

Graph A Current vs. Time

A. ____ Current that changes polarity.

D. ____ What comes from the power outlet.

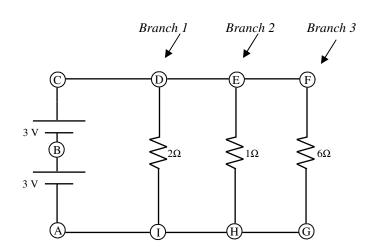
B. ____ Current that is constant.C. ____ What comes from a battery.

E. ____ Graph A F. ____ Graph B.

9. How long does it take for a 6 volt battery to push 12 coulombs thru a 960Ω resistor?

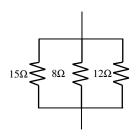
Rt =

- 10. In a circuit, the resistance doubles and the voltage is halved. How does the power change?
- Graph B Current vs. Time


11. A vacuum cleaner pulls 12A when hooked up to a 120V wall outlet.

A person uses the vacuum 30 minutes a day every day for 2 weeks.

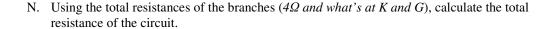
- A. How much power does it use?
- B. How many hours is it run?
- C. How many kWhrs, were used?
- D. If the power company charges 11 cents per kWhr, how much did this cost?
- 12. Use the circuit at the right to answer the following.



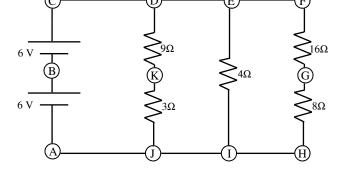
- i. how will it affect the current in the 2Ω resistor?
- ii. how will the total current change?
- iii. how will the total resistance change?
- B. What is the voltage at point H?
- C. What is the voltage at point F?
- D. What is the voltage from point E to point H?
- E. Calculate the current in each branch.
- F. Which resistor has the most voltage across it?
- G. Which resistor has the most current running thru it?
- H. What is the current flowing from H to I?
- I. What is the total current of the circuit?
- J. How much power is used by the 6Ω resistor?
- K. Calculate the total resistance of the circuit.
- L. Calculate the power dissipated by the 1Ω resistor.

- M. Calculate the power dissipated by the 6Ω resistor.
- N. How much power is used by the entire circuit?

13. Calculate the total resistance of the resistors shown.


Resistors in Parallel

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \dots$$


Resistors in Series

$$R_{total} = R_1 + R_2 + R_3 \dots$$

- 14. After working the circuit, answer the following.
 - A. What is the total resistance of branch 1 (write this at K)?
 - B. What is the current flowing thru branch 1?
 - C. What is the current flowing thru the 9Ω ?
 - D. How much voltage does the 9Ω use?
 - E. How much current flows thru the 4Ω ?
 - F. What is the total resistance of branch 3 (write this at G)?
 - G. What is the current flowing thru the 16Ω ?
 - H. How much voltage does the 16Ω use?
 - I. How much voltage is left at point G?
 - J. How much charge passes thru the 16Ω each minute?
 - K. How much current flows from I to J?
 - L. What is the total current of the circuit?
 - M. Using the total current and voltage, calculate the total resistance of the circuit.

- O. Calculate the total power of the circuit.
- P. How much energy does the circuit use in 20 seconds?

Transcription: Process in which DNA is copied into mRNA. (*Before it can <u>ride it must transcribe.</u>*)

Translation: Process in which proteins are made from tRNA. (*Before it can <u>create it must translate.</u>*)

Ribosomes: Cell organelle where proteins are created.

Amino Acids: Building blocks of proteins.

Codon: Three base code that tells the ribosome what amino acid to make. Ex. AGA

15. Translation (TL) or Transcription (TS)
--

A.		When	mRNA	is	turned	into	tRNA.
----	--	------	------	----	--------	------	-------

B. ____ When DNA is turned into mRNA.

C. ____ Occurs in the nucleus.D. Occurs at the ribosomes.

16. The three nitrogen base code that tells the r_____ which a____ a___ to make is called a:

LOOOL		
(vaatuu	B B	λ.
1 /min	db ~	
	E S F	$/\!\!/$
	ap ap	
	G Cell membr	rane

- 17. The picture at the left shows the steps in protein synthesis in an animal cell.
 - A. The double coiled molecule at letter A is called the
 - B. The double coiled molecule is unzipping and giving its code to the single stranded molecule at letter B. This single stranded molecule is the _____.
 - C. The process in which molecule A becomes molecule C is called t_____.
 - D. Molecule F is called the _____.
 - E. When D becomes F is called t_____.
 - F. Letter E shows the chaining of amino acids to make a p
 - G. Two of the major organelles are shown in grey.
 - i. A, B, and C are in the _____.
 - ii. G shows the _____.
 - 18. From the codon chart below, what amino acid comes from the codon: CAG?

Second Nitrogen Base (2nd letter)

(U		С		Α		G		
	U	UUU	Dhonylolonino	UCU	Serine	UAU	Tyrosine	UGU	Cysteine	U
		UUC	Phenylalanine	UCC		UAC		UGC		С
		UUA	Leucine	UCA		UAA	Ochre	UGA	Opal	Α
		UUG	Leucine	UCG		UAG	Amber	UGG	Tryptophan	G
ette	С	CUU	Leucine	CCU	Proline	CAU	- Histidine	CGU	- Arginine	U
First Nitrogen Base (1st letter)		CUC		CCC		CAC		CGC		С
	O	CUA		CCA		CAA	Glutamine	CGA		Α
		CUG		CCG		CAG		CGG		G
	A	AUU	Isoleucine	ACU	- Threonine	AAU	- Asparagine	AGU	Serine	U
		AUC		ACC		AAC		AGC		С
		AUA		ACA		AAA	Lysine	AGA	Arginine	Α
		AUG	Methionine	ACG		AAG		AGG		G
	G	GUU	Alanine	GCU	- Alanine -	GAU	Aspartic acid	GGU	Glycine	U
		GUC		GCC		GAC		GGC		С
		GUA	Alailifie	GCA		GAA	Glutamic acid	GGA		Α
		GUG		GCG		GAG		GGG		G

Third Nitrogen Base (3rd letter)