2013 PreAP Circuits 4

Let me talk you thru your first series circuit. [Sniff. "Your mom and I are so proud..."] Some tips to make this easier: 1) Work the circuit first, meaning figure out everything on the diagram, labeling everything as you go. You can answer the questions later; 2) Write all numbers with units or the circuit will get REALLY confusing; 3) when writing current, show an arrow, since current flows.

0.5A

 6Ω

- 1. Use the circuit at the left to answer the following questions:
 - A. * What is the voltage at point A? (*label it*)
 - B. * What is the voltage at C? (*label it*)
 - C. From what you saw in Lab 1, by adding resistors in series does the current in the circuit increase or decrease?
 - D. *What is the total resistance of the circuit? (label this R_{total} and put it in the middle of the loop.) Now we are going to use V = IR, but with subscripts.
 - E. * Since the each of the resistors affects the current in the ENTIRE circuit, use $V_{total} = I_{total} R_{total}$ to calculate the total current flowing thru the loop. (*label this I*_{total} and put it in the middle of the loop.)
 - F. * Since there is only one path for the electrons to flow, which resistor has the greatest current flowing thru it?
 - G. What is I_{R1} (the current flowing thru R_1)? (*label it on the arrow below* R_1)
 - H. * What is I_{R2} ? (label on the arrow near R_2)
 - I. What is I_{R3} ? (label it.)

So we need to find the voltage used by each resistor. Now let me show you how.

- J. From the series circuit lab, do resistors add or subtract voltage?
- K. So, will the voltage at letter E be greater or less than at D?
- L. * Now we are concentrating on just resistor 1 (zooming in on it). You have the current flowing thru the resistor and its resistance. Calculate V_{R1} (the voltage used by R_1). You will now change V = IR to $V_{R1} = I_{R1}(R_1)$. (label it on the big circuit, above R_1).

Since resistors use up voltage, we can consider V_{RI} negative.

- M. Calculate the voltage remaining at point E by subtracting the voltage used by R₁ from the voltage at letter D (*and label it*).
- N. Since there is no resistor between points E and F, what must be the voltage at point F?
- O. Again, since there is nowhere for the current to go, except thru each resistor, the current in R_2 is the same as R_1 , so, following the same logic as for R_1 , calculate the resistance used by R_2 and R_3 , labeling the diagram as you go.
- P. Calculate the voltage left at point G.
- Q. How does the voltage used by the 4Ω resistor compare with that of the 2Ω resistor?
- R. How does the voltage used by the 6Ω resistor compare with that of the 2Ω resistor?

This is how you will work ALL circuits from now on.

- 2. After working the circuit at the right, answer the following questions.
 - A. Just by looking, which resistor uses the least amount of voltage?
 - B. How much voltage does a wire use?
 - C. * Which resistor has the greatest current?
 - D. What is the total voltage?
 - E. What is the total resistance?
 - F. * What is the total current?
 - G. How many paths are there for the current to flow?
 - H. * How much current is flowing thru the 3Ω resistor?
 - I. * Given that V = IR (always) how much voltage does the 3Ω resistor use?
 - J. Since resistors use up voltage, how much voltage is left at letter E?

We haven't talked about electrical power, yet, but P = VI (I will show you why later). P is still in watts.

- K. * How much power is used by the 3Ω resistor? (*Use* $P_{3\Omega} = V_{3\Omega}I_{3\Omega}$)
- L. Calculate the voltage used by the 4Ω resistor.
- M. What is the voltage difference between point I and point H?

Let's work with power a bit more.

- 4. What are the units for power?
- 5. * What are the units for power, broken up?

Now, let's combine the two equations.

- 6. A series circuit has a total voltage of 3.5 volts and draws 0.25 amps.
 - A. * Calculate the total power generated by the battery.
 - B. Change your units, breaking down watts.
 - C. * How much energy does the circuit use in 2 minutes?
- 7. Given that V = IR and P = VI. Now, let's combine these two equations.
 - A. * Write an equation for power that does not have voltage in it. (Substitute V = IR into P = VI.)
 - B. * Write an equation for power that does not have current in it. (Solve for I in the first equation and substitute into the second equation.)
- 8. Choosing the correct equations for power $(P = VI, P = I^2R, \text{ or } P = V^2/R)$, how does the power used change if:
 - A. * The voltage is doubled.
 - B. * The current is doubled and the resistance is doubled.
 - C. The voltage is doubled and the resistance is halved.
 - D. The voltage is halved and the current is doubled.

And if you don't remember: $1 k\Omega = 1000 \Omega$ and 1 mA = 0.001 A (or $1 \times 10^{-3} A$).

9. * A $45k\Omega$ resistor has 65mA flowing thru it. How much power does it dissipate?

1A. Ovolts

1B 6V

1C. Increase

1D: 12Ω

1E. 0.5A

1F. Same for all

1H. 0.5A (only 1 path for e's to flow)

1L. 3V

2C: same (aren't they in series?)

2F: 3A (24/8)

2H: 3A

2I: 9V

2K: 27W

3: P = W/t

5: watts = J/sec or Nm/sec

6A: 0.875 watts

6C: mult by $120 \sec = 105 \text{ joules}$

7A: $P = I^2R$ 7B: $P = V^2/R$

8A: have to use $P = V^2/R$, since if V

increases, so will I. So x4

8B: use $P = I^2R = (x4)(x2) = x8$