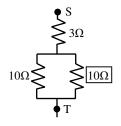
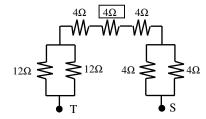

PreAP Circuits 8

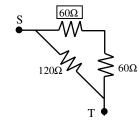
1. Three light bulbs of equal resistance and two batteries of equal voltage are configured in a circuit as shown.

- A. What is the total voltage of the circuit?
- B. If resistor 1 is unscrewed describe what happens to the other bulbs?
- C. If resistor 3 is unscrewed describe what happens to the other bulbs?
- D. * How much current flows thru R₁? (Yes, you are working in variables.)
- E. How much current flows thru R₃?
- F. * What is the total current flowing thru the batteries?
- G. Using V = IR for the totals, calculate the total resistance of the circuit.
- 2. Use the four diagrams below to answer the following.
 - A. Find the equivalent resistance for each of the following. Note: Each of them can be done easily without a calculator.

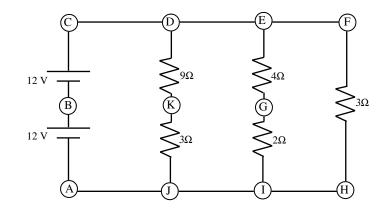

$$A_{I}$$
. * Rt = _____

$$A_{II}$$
. $Rt = _____$


9Ω


$$A_{III}$$
. * Rt = _____

$$A_{IV}$$
. $Rt = _____$


$$B_{I}$$
. * It = _____

$$B_{II}$$
. It = _____

$$B_{III}$$
. * It = _____

$$B_{IV}$$
. It =

- B. If a 9V power supply is placed from points S to T in each example. Calculate total current for each resistors combo.
- C. * Determine the current flowing thru the selected resistors (the ones with the boxes around them). Again, this is very easy. Write the current under or next to the selected resistor.
- 3. Use the circuit at the right to answer the following. Remember: included units on all numbers and work the circuit first.
 - A. * Calculate the currents throughout the circuit.
 - B. How much current flows thru the 9Ω ?
 - C. Calculate I_{total}.
 - D. How does $I_{D \text{ to } J}$ compare to $I_{E \text{ to } I}$?
 - E. How does $R_{D \text{ to } J}$ compare to $R_{E \text{ to } I}$?
 - F. How does I D to J compare to I F to H?
 - G. How does $R_{D \text{ to } J}$ compare to $R_{F \text{ to } HI}$?
 - H. What is R_{total} ?

- I. * Calculate the voltage used by the 9Ω resistor.
- J. Calculate P used by the 9Ω resistor.
- K. * What is the voltage at point K?

- 4. * Once again, take V = IR and put it into P = VI and get a power equation with only I and R in it.
- 5. * Solve for I in the V = IR equation and substitute it into P = VI and get a power equation with only I and R in it.
- 6. A 9V battery is placed across a 180Ω resistor.
 - A. How much current flows thru the resistor?
 - B. * Remembering that I = Q/t, where Q is charge in coulombs, how much charge flows thru the resistor in 10 seconds?

Volts break down into Joules/Coulomb, or the amount of works done or energy given by a voltage source (like a battery [known as a source of emf {electromotive force}]). (Enough parenthesis for you?)

- 7. * How much work does a 9V battery do on 3 C of charge?
- 8. A source of emf does 36 J of work to move 4 C thru a circuit. How much voltage is the battery providing?
- 9. A 12Ω resistor has 3A flowing thru it.
 - A. * How much charge flows in 2 seconds?
 - B. How much voltage does the resistor use?
 - C. * How much energy does the resistor use in 2 seconds?
 - D. (Or, going another way...) How much power does the resistor dissipate? (Use the equation from Q4 or 5.)
 - E. Since P = [J/s], calculate the energy used by the resistor in 2 seconds?.

```
1D: 2V/2R = V/R

1F: 3V/R

2A_I: Rt = 3+5 = 8\Omega

2A_{III}: 20 \Omega

2B_I: 9/8 = 1.125 A

2B<sub>III</sub>: 9/20 = 0.45A

2CI: The right 10\Omega resistor is equal to the other, so the each have half the current = 0.45/2 = .563 A

3A: 2rd branch's current (E to I) = 24V/6\Omega = 4A.

3K: 24V-18V = 6V left at K.

4: P = I^2R

5: P = V^2/R

6B: 0.05 A = 0.05C/sec times 10 sec = 0.5 C

7: 9V = 9 J/C So (9J/C)(3C) = 27J

9A: 6C (from 3A = 3C/s times 2 sec)

9C: [J] comes from [J/C] which comes from Volts, so 216 J
```