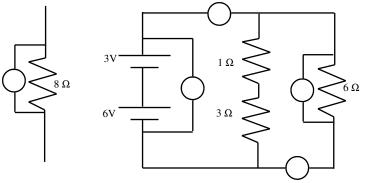
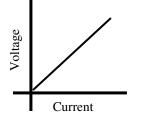

PreAP Circuits 10

- 1. You are given a bunch of 20Ω resistors. You can put them together in any combination of series and parallel.
 - A. How could you make 100Ω ?
 - B. How could you make a 5Ω ?
 - C. How could you put them together to make 50Ω worth of resistance? (*Get creative.*)


From the "Electrical Power" notes:

- 2. A. Two light bulbs of different resistance are in series, which one is brighter?
 - B. Why? (Talk about current and voltage.)
- A. Two light bulbs of different resistance are in parallel, which one is brighter?
 B. Why?
- 4. * What do these units break down? V = Watt = Amp =
- 5. * Heat is also measure in joules. A $3k\Omega$ resistor has 2.5A flowing thru it. How much heat is does it generate in 2 minutes?
- 6. * A 4.5k Ω resistor is hooked up to a 120V circuit. How long is it on if 113 coulombs passes thru it?
- 7. Two 9-volt batteries are connected in series. If the batteries do 36 J of work, how much charge is moved thru the circuit?
- 8. * A 45 Ω and a 120 Ω resistor are in series in a circuit. The 120 Ω resistor uses 160W. How much current flows thru the other resistor?
- 9. Let me talk you thru this circuit. It would be VERY helpful if you labeled the diagram as you answer the questions. I didn't take the time to work out even numbers.


- A. What is the voltage at A?
- B. What is the voltage at C?
- C. * What is the equivalent resistance for the 15Ω and 9Ω resistors?
- D. Redraw the simplified circuit below the original.
- E. From your simplified circuit what is the total resistance of the circuit?
- F. * What is the total current?
- G. How much current is flowing thru the 10Ω resistor? (*Mark this on the original circuit.*)
- H. * How much voltage is used by the 10Ω resistor?
- I. * How much voltage is left at D?
- J. * How much voltage is at E and F?
- K. * How much current flows thru the 15Ω resistor?
- L. How much current flows thru the 9Ω resistor?
- M. If the 15Ω and 9Ω resistors were light bulbs, which one would be brighter?

- 10. * Identify each of the meters at the right as an ammeter (A), ohmmeter (O), or voltmeter (V). (*Put the appropriate letter in the correct circle. Study help available.*)
- 11. Which kind of meter is in parallel with a device?
- 12. Which kind of meter is in series with a device?

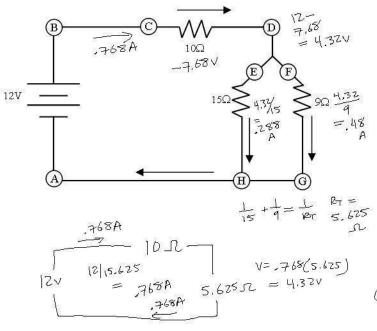
- 13. A. * The slope of the line on the graph gives what? (See Circuits 3 for notes.)
 - B. How would the line change in the following situations?
 - i. * If the temperature of the conductor is lowered?
 - ii. If wire is made longer?
 - iii. If the wire is thicker?
 - iv. If the wire is changed from silver to copper?

Q4A: V = J/C W = J/s A = C/sQ5: 7500 W or J/s So, 9×10^5 J Q6: 0.027 A or C/s So, 4185seconds Q8: 1.15 A (in series, right? So same current) Q9C: 5.625 Ω Q9F: 0.768A Q9H: 7.68V Q9I: 4.32V (or 12 - 4.32) Q9J: 4.32 V (same wire) Q9K: 0.288A (I = V/R)

Due Fri., Jan 20

2011-12 PreAP Circuits 10

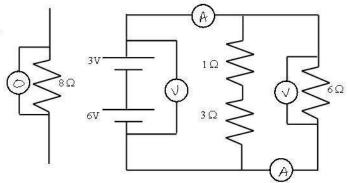
- 1. You are given a bunch of 20Ω resistors. You can put them together in any combination of series and parallel.
 - A. How could you make 100Ω ? 5 of them in series. (20 + 20 + 20 + 20 + 20)
 - How could you make a 5 Ω ? $\frac{20}{4}$, so 4 of them in parallel Β.
 - C. How could you put them together to make 50Ω worth of resistance (get creative)?


From the "Electrical Power" notes:

- A. Two light bulbs of different resistance are in series, which one is brighter? Brager R 2. B. Why? (Talk about current and voltage.) Same current. Bigger R = more voltage.
- A. Two light bulbs of different resistance are in parallel, which one is brighter? 5107 = ||er k 3 B. Why? Same V. Smaller R = more current.
- Watt = $\frac{\sigma}{sec}$ Amp = $\frac{\sigma}{sec}$ * What do these units break down? $V = \sqrt[3]{2}$ 4.
- * Heat is also measure in joules. A 3k resistor has 2.5A flowing thru it. How much heat is does it generate in 5. 2 minutes?

- * A 4.5k Ω resistor is hooked up to a 120V circuit. How long is it on if 113 coulombs passes thru it? $T = \frac{V}{R} = \frac{120}{4500} = .027 A$ $\frac{.027 C}{15cc} = \frac{113C}{25cc} \text{ or } \frac{15cC}{.027C} (113C) = 41855cC$
- 7. Two 9-volt batteries are connected in series. If the batteries do 36 J of work, how much charge is moved thru the circuit? $|8V = \frac{185}{2} \qquad \frac{1}{187} \frac{365}{1} = 2 \text{ coulombs}$
- * A 45 Ω and a 120 Ω resistor are in series in a circuit. The 120 Ω resistor uses 160W. How much current flows thru the other resistor? T-133

9. Let me talk you thru this circuit. It would be VERY helpful if you labeled the diagram as you answer the questions. I didn't take the time to work out even numbers.


Ι.

- A. What is the voltage at A? OV
- B. What is the voltage at C? $| \mathbb{Z} \vee$
- C. * What is the equivalent resistance for the 15Ω and 9Ω resistors? 5.625 S
- D. Redraw the simplified circuit below the original.
- From your simplified circuit what is the total re-E. sistance of the circuit? 15.6251
- * What is the total current? 12/15.625 = .768A
- G. How much current is flowing thru the 10Ω resistor? 768A
- H. * How much voltage is used by the 10Ω resistor? $7,68 \lor = 10(.768)$
 - * How much voltage is left at D? 4.32V
- * How much voltage is at E and F? 4.32V J.
- K. * How much current flows thru the 15Ω resistor? 4.32/15 = ,288A
- L. How much current flows thru the 9Ω resistor?
- (the rest of it), 768 -. 288 = 48 A
- M. If the 15Ω and 9Ω resistors were light bulbs, which one would be brighter?

cstephenmurray.com

- 10. * Identify each of the meters at the right as an ammeter (A), ohmmeter (O), or voltmeter (V). (Put the appropriate letter in the correct circle.)
- 11. Which kind of meter is in parallel with a device?
- 12. Which kind of meter is in series with a device? $\supseteq m meter$

13. A. * The slope of the line on the graph gives what? R 619 V/I = R R WTC B. How would the line change in the following situations? Voltage i. * If the temperature of the conductor is lowered? less slope ii. If wire is made longer? more slope Small R iii. If the wire is thicker? 1855 5lope Tw. If the wire is changed from silver to copper? hove stope Sgreater cross-sectional are Current 1055 greater see 3263 V light v =I R R=¥ bulb