2009 PreAP Momentum 4

1. The graph at the left shows the force acting on an object. The object begins at rest.
A. Which letter shows a negative force?
B. At letter A , is the force positive or negative?
C. So, from 0 to 3 seconds, will the object will move to the right or left?
D. At letter B is the force positive or negative?
E. From 3 to 12 seconds, does the object speed up or slow down?
F. At letter C is the force positive or negative?
G. If a 5 kg object was moving $2.5 \mathrm{~m} / \mathrm{s}$ before the impulse shown, calculate its final velocity.
2. Slim Jim and Kim go ice skating. Standing amorously on the ice, they push off from each other. Jim is 60 kg and Kim is 40 kg . If Kim ends up moving to the right at $2 \mathrm{~m} / \mathrm{s}$. How fast is Jim moving?

3. What kind of collision: elastic, inelastic, perfectly inelastic?
A) \qquad The two objects stick together.
B) \qquad The two objects don't stick together.
C) \qquad Kinetic energy is conserved.
D) ___ The experiment cars with the Velcro sides towards each other.
E) ___ The experiment cars with the magnets towards each other.
F) \qquad Some E_{k} is lost.

4. A ballistic pendulum is used by forensic scientists to determine the speed of bullets. In our example a 5 g bullet is shot into a 1 kg block of wood, which is at rest to begin with.
A. After converting all numbers to standard units, calculate the velocity of the block and bullet after the collision.
B. The pendulum then swings. How much height does the pendulum gain?
5. A. Write the equation for momentum:
B. Write the equation for change of momentum:
C. Take out the mass and rewrite the equation:

6. A. Calculate the change of momentum for each of the above masses.
B. Rank the above masses from greatest to least magnitude. If any are the same, put them on the same number.
\qquad 2. \qquad 3. \qquad 4. \qquad

After collision

Let me walk you thru a two-dimensional collision. Remember: momentum is conserved in every dimension. (Minus 20 points for blank.)
8. A 0.5 kg ball collides with a 0.75 kg ball. The diagram above shows the situation before and after the collision.
A. On the diagram, break v_{1} and v_{2} into their x and y components on the after side. Ex: Vsin 30° would equal 0.5 v .
B. How much y-direction momentum is there before?
C. How much y-direction momentum is there after?
D. Below, write the conservation of momentum equations for each direction and solve for the final velocities.

There will be 2 unknowns and two equations, so you will have to solve for one unknown and substitute it into the other equation.

$$
\Sigma p_{\text {Xbefore }}=\Sigma p_{\text {Xafter }}
$$

$$
\Sigma \mathrm{p}_{\mathrm{Ybefore}}=\Sigma \mathrm{p}_{\text {Yafter }}
$$

$\begin{aligned} & \tilde{0} \\ & 0.0 \\ & 0 \\ & 0 \end{aligned}$		Constant Field- (Field lines are parallel, like near the earth or near a charged flat plate)		Point Sources (2 particles) Field lines radiate outward	
		Gravitational (caused by mass)	Electric (caused by charge)	Gravitational (caused by mass)	Electric (caused by charge)
	Force (F)	$=m g \quad(\mathrm{in} \mathrm{N})$	$=q E \quad($ in N$)$	$\underset{g}{F_{g}}=G \frac{m_{1} m_{2}}{r^{2}}$	$\underset{(\operatorname{in~} \mathrm{N})}{F_{e}}=k_{c} \frac{q_{1} q_{2}}{r^{2}}$
	Field (potential for a force)	$=g \quad(\mathrm{in} \mathrm{N} / \mathrm{kg})$	$\underset{(\text { in } \mathrm{N} / \mathrm{C})}{=\mathrm{E}}=\frac{V}{\Delta d}$	$\underset{\text { (in } \mathrm{N} / \mathrm{kg} \text {) }}{=} G \frac{q_{1}}{r^{2}}$	$\underset{(\text { in } \mathrm{N} / \mathrm{C})}{E}=k_{c} \frac{q_{1}}{r^{2}}$
$\stackrel{\sim}{6}$	Potential Energy (PE or U)	$=m g \Delta h \quad$ (in J) $h=0$ on ground	$\underset{(\text { in } \mathrm{J})}{\Delta P E}=-q E \Delta d$	$\underset{(\text { in J) }}{P E}=G \frac{m_{1} m_{2}}{r}$	$\underset{(\text { in } \mathrm{J})}{P E}=k_{c} \frac{q_{1} q_{2}}{r}$
$\begin{aligned} & \text { Tivi } \\ & \text { Wh } \end{aligned}$	Potential (for energy) or Voltage	$=g \Delta h \quad($ in $\mathrm{J} / \mathrm{kg})$	$\Delta \mathrm{V}=-E \Delta d$ (in J/C)	$\underset{(\text { in } \mathrm{J} / \mathrm{kg})}{=} G \frac{m_{1}}{r}$	$\underset{\text { (in J/C) }}{V}=k_{c} \frac{q_{1}}{r}$

Remember that the quantities that are per coulomb are about position only.

ground
9. Three masses are above the ground.
A. Which feels a greater force: 2 kg or 4 kg ?
B. Which has a greater gravitational field acting on it: 2 kg or 4 kg ?
C. Which has more potential energy: 5 kg or 2 kg ?
D. Which has more potential for energy: 5 kg or 2 kg ?
E. Which has more potential for energy: 2 kg or 4 kg ?

10. Imagine two positions near a positive charge. Which position...
A. ...has the greater electric field strength?
B. ...has the greatest force?
C. ...has the greatest electric potential energy?
D. ...has the greatest electric potential (voltage)?
11. Remembering that μ is " $\times 10^{-6 "}$,
A. Calculate the magnitude of the electric field at the dot due to each charge.

Electric field direction is the defined as the direction a positive charge would want to move.
B. On the dot, draw arrows showing the electric fields you calculated with the correct direction.
C. Electric fields are vectors. Calculate the net electric field's magnitude and direction.
D. Calculate the electric potential (voltage) for each charge.
E. Electric potential energy and electric potential are scalars. Find the total electric potential by adding or subtracting algeabraically.

