1. For each of the masses below decide if the $\Delta \mathrm{p}$ is + or - and calculate $\Delta \mathrm{p}$.

A. $\Delta \mathrm{p}:+$ or $-?$

* $\Delta \mathrm{p}=$ $\qquad$

C. $\Delta \mathrm{p}:+$ or - ?
$\Delta \mathrm{p}=$ $\qquad$
D. $\Delta \mathrm{p}:+$ or - ?
$\Delta \mathrm{p}=$ $\qquad$

Remember when drawing vectors, longer arrows $=$ greater magnitude.

2. A. If $\mathrm{p}_{1}=\mathrm{p}_{2}$ and $\mathrm{m}_{2}$ is moving faster, which is more massive: $\mathrm{m}_{1}$ or $\mathrm{m}_{2}$ ?
B. * Draw the $\mathrm{p}_{\text {net }}$ of the system.
3. A. If $p_{3}=2 p_{4}$, what is the velocity of the 4 g mass?
B. Draw $p_{n e t}$.

4. The momentum of $\mathrm{m}_{1}$ and $\mathrm{p}_{\text {net }}$ are given.
A. *Draw the momentum of $m_{2}$.
B. If $m_{1}=m_{2}$, which mass is moving faster?
5. Three hockey pucks are on frictionless ice. Two hockey pucks slam into and attach to the third puck.
A. Since they stick together, $\mathrm{m}_{\text {final }}=$
B. * Calculate the initial net momentum.
C. What must be the final net momentum?
D. Calculate the final velocity of the combined object.
(Velocity is a vector, so magnitude and direction.)

6. A 12 kg object is moving $20 \mathrm{~m} / \mathrm{s}$ in the positive direction when it encounters the forces shown on the graph below.

A. When is the object feeling a positive acceleration?
B. When is the object feeling no acceleration?
C. When is the object experiencing a negative acceleration?
D. * Calculate the impulse on the object.
E. Calculate the change of momentum of the object.
F. Calculate its final momentum.
G. Calculate the object's final velocity.
7. Match the situations below with the concept you would use to solve at the right. You will use them more than once.
A. $\qquad$ * An object is dropped. Find its velocity part-way down.
B. $\qquad$ * A moving object stops. You are given time.
I. $\mathrm{E}_{\mathrm{B}}+\mathrm{I}=\mathrm{E}_{\mathrm{A}}$ (Energy-Work)
C. $\qquad$ * An astronaut throws a tool and ends up going backwards.
II. $\quad \Sigma \mathrm{E}_{\mathrm{B}}=\Sigma \mathrm{E}_{\mathrm{A}}$ (Conservation of Energy)
D. $\qquad$ An object at rest is pushed and accelerates. You are given
IV. $\Sigma \mathrm{p}_{\mathrm{B}}=\Sigma \mathrm{p}_{\mathrm{A}}$ (Conservation of Momentum) the distance it is pushed.
E. $\qquad$ An object is compressed against a spring. How fast is it moving when the spring is released?
F. $\qquad$ Two cars collide at an intersection. (Everyone was fine.)
G. $\qquad$ * A moving object slows down due to friction.

Q1A: change is negative, since it started + and ended $-. \Delta p=-846 \mathrm{kgm} / \mathrm{s} \quad \mathrm{Q} 1 \mathrm{~B}:+$ change; $\Delta \mathrm{p}=640 \mathrm{kgm} / \mathrm{s}$
Q2B: Crazy and Lazy, where p1 and p2 are crazy.
Q4A: $p_{\text {net }}$ is Lazy. You have one of crazy's paths. Find the other one that makes Lazy's path.
Q5A: Find p1 and p2, then do pyth and inverse tan to find $p_{\text {net }}$. Be sure to do a quadrant check for the angle.
Q6D: Find the area of the graph.
7A: II 7B: III (since Ft = Impulse) 7C: IV (2 objects push off each other)
7G: I or III [depends on whether you are given distance (I) or time (III).]

