Due Wed., Dec 12

2012 PreAP Momentum 8

1. For each of the masses below decide if the Δp is + or – and calculate Δp .

B. Δp : + or -? $* \Delta p =$

C. Δp : + or –? $\Delta p = 1$

D. Δp : + or –? $\Delta p = \underline{\hspace{1cm}}$

Remember when drawing vectors, longer arrows = greater magnitude.

2. A. If $p_1 = p_2$ and m_2 is moving faster, which is more massive: m_1 or m_2 ?

B. * Draw the p_{net} of the system.

3. A. If $p_3 = 2p_4$, what is the velocity of the 4g mass?

B. Draw p_{net}.

The momentum of m_1 and p_{net} are given.

A. *Draw the momentum of m₂.

B. If $m_1 = m_2$, which mass is moving faster?

Three hockey pucks are on frictionless ice. Two hockey pucks slam into and attach to the third puck.

B. * Calculate the initial net momentum.

C. What must be the final net momentum?

D. Calculate the final velocity of the combined object. (Velocity is a vector, so magnitude and direction.)

6. A 12 kg object is moving 20 m/s in the positive direction when it encounters the forces shown on the graph below.

- A. When is the object feeling a positive acceleration?
- B. When is the object feeling no acceleration?
- C. When is the object experiencing a negative acceleration?
- D. * Calculate the impulse on the object.
- E. Calculate the change of momentum of the object.
- F. Calculate its final momentum.
- G. Calculate the object's final velocity.
- 7. Match the situations below with the concept you would use to solve at the right. You will use them more than once.
 - A. _____ * An object is dropped. Find its velocity part-way down.
 - B. _____ * A moving object stops. You are given time.
 - C. _____ * An astronaut throws a tool and ends up going backwards.
 - D. _____ An object at rest is pushed and accelerates. You are given the distance it is pushed.
 - E. _____ An object is compressed against a spring. How fast is it moving when the spring is released?
 - F. _____ Two cars collide at an intersection. (Everyone was fine.)
 - G. ____ * A moving object slows down due to friction.

- I. $E_B + I = E_A$ (Energy-Work)
- II. $\Sigma E_B = \Sigma E_A$ (Conservation of Energy)
- III. $p_B + I = p_A$ (Momentum-Impulse)
- IV. $\Sigma p_B = \Sigma p_A$ (Conservation of Momentum)

Q1A: change is negative, since it started + and ended -. $\Delta p = -846 \text{ kgm/s}$ Q1B: + change; $\Delta p = 640 \text{ kgm/s}$

Q2B: Crazy and Lazy, where p1 and p2 are crazy.

Q4A: p_{net} is Lazy. You have one of crazy's paths. Find the other one that makes Lazy's path.

Q5A: Find p1 and p2, then do pyth and inverse tan to find p_{net}. Be sure to do a quadrant check for the angle.

Q6D: Find the area of the graph.

⁷G: I or III [depends on whether you are given distance (I) or time (III).]