2012 PreAP Momentum 4

With some Energy 11

Type of Collision	Momentum	Kinetic Energy	Objects Combine?	Example
Elastic	Conserved	Conserved ($\Sigma KE_B = \Sigma KE_A$)	No	Pool balls/ Newton's Cradle (see above)
Inelastic	Conserved	Not conserved	No	Bullet goes something, cars hit each other, there is damage.
Perfectly Inelastic	Conserved	Not conserved	Yes	Catching a ball; arrow sticks into a target

- 1) Slim Jim is running 2m/s to the left and jumps into a boat.
 - A. * How much momentum is there before?
 - B. How much momentum does there have to be afterwards?
 - C. What is the combined mass of Jim and the boat?
 - D. * What kind of collision is this?
 - E. * Under the diagram, write the conservation of momentum equation and solve for the final velocity.

- A 1 kg object moving 10 m/s to the right bumps into a 12 kg object moving 2 m/s to the right.
 Afterwards the 12 kg object is moving 3 m/s to the right.
 - A. * Under the diagram, calculate the final velocity of the 1 kg object.

 $\Sigma KE_{before} \! = \! \Sigma KE_{after} \! = \!$

B. * Calculate the total kinetic energy before and afterwards and decide what kind of collision it was from the chart at the top of the page.

- 3) The Olsen Twins are driving identical 1,000 kg cars (it's a twins thang).
 - A. Calculate and label the initial momentum of each.
- B. When they stop, what is their final momentum?
- C. * Calculate and label Δp for each car.
- D. Which one had a bigger change of momentum?
- E. Which one took more time to stop?
- F. Which one needed a bigger force to stop?
- G. * Remembering that impulse (Ft) equals the change of momentum, which one had the bigger impulse?
- H. * Using a kinematic equation, find the time for Mary Kate to stop. (Show your work or NO credit.)
- I. * If Ashley's brakes apply 18,000 N of force in stopping, use conservation of momentum to calculate Ashley's stopping time. (*Show your work or NO credit.*)

- Imagine you are looking down on two moving masses, as shown.
 - A. * Calculate momentum 1 (the 2 kg object).
 - B. Calculate momentum 2.
 - C. Calculate the magnitude of the net momentum.
 - D. Sketch the direction of p_{net} starting at the origin.
 - E. Just by looking at the numbers, what is the direction of the net momentum?
 - F. * Calculate the kinetic energy of the 2 kg object.
 - G. Calculate the kinetic energy of the 4 kg object. (Notice that the mass of one is doubled, but the velocity of the other is doubled and v is squared, so v matters more.)
 - H. * Calculate the net kinetic energy of the two objects.

Energy 11, Q8—In the equation $\frac{1}{2}$ kx², x is the distance a spring stretches or compresses from its equilibrium position. The equilibrium position is the spring's relaxed position. Assume the picture shows different masses on the same spring. The ruler is a meter stick (it is 1 meter long).

- A. * What is the equilibrium position for this spring?
- B. * What is x for the 100g mass?
- C. * Calculate the spring constant for the spring in N/m.
- D. * Calculate the potential elastic energy of the 100g mass.
- E. What is x for the 300g mass?
- F. * Calculate the elastic energy of the 300g mass.
- G. $*x_{300g}$ is ____ times as great as x_{100g} .
- H. Divide part F by part C.

Notice that x was tripled and PEel increased by a factor of 9. You could see this in the equation. Since x is squared ($\frac{1}{2}kx^2$), 3 times the distance is 9 times the elastic energy.

1A: -120 kgm/s (moving left)

1D: Perfectly inelastic: they combine afterwards. 1E: -1.33 m/s

2A: -2m/s

2B: $\Sigma KE_{before} = 74 \text{ J}$ do the after

3C: -30,000 kgm/s (final minus initial)

3G: same

3H: -10 points for not showing how you get this answer. Find a kinematic equation, work it out. Don't just write the answer. Answer: 3.33 sec

3I: Hint: $p_{before} - I = p_{after}$

4A: -24 kgm/s (down or left is neg)

4F: 144 J E11Q8) A: 10 cm or 0.1 m; 4H: 216 J (scalars)

B: x = 0.05 m

C: divide newtons by meters and get 20N/m

D: 0.25 J

F: 0.225 J

G: 3 times as great.