Type of Collision	Momentum	Kinetic Energy	Objects Combine?	Example
Elastic	Conserved	Conserved $\left(\Sigma \mathrm{KE}_{\mathrm{B}}=\Sigma \mathrm{KE}_{\mathrm{A}}\right)$	No	Pool balls/ Newton's Cradle (see above)
Inelastic	Conserved	Not conserved	No	Bullet goes something, cars hit each other, there is damage.
Perfectly Inelastic	Conserved	Not conserved	Yes	Catching a ball; arrow sticks into a target

1) Slim Jim is running $2 \mathrm{~m} / \mathrm{s}$ to the left and jumps into a boat.
A. * How much momentum is there before?
B. How much momentum does there have to be afterwards?
C. What is the combined mass of Jim and the boat?
D. * What kind of collision is this?
E. * Under the diagram, write the conservation of momentum equation and solve for the final velocity.

2) A 1 kg object moving $10 \mathrm{~m} / \mathrm{s}$ to the right bumps into a 12 kg object moving $2 \mathrm{~m} / \mathrm{s}$ to the right. Afterwards the 12 kg object is moving $3 \mathrm{~m} / \mathrm{s}$ to the right.
A. * Under the diagram, calculate the final velocity of the 1 kg object.

$$
\Sigma \mathrm{KE}_{\text {before }}=\quad \Sigma \mathrm{KE}_{\text {after }}=
$$

B. * Calculate the total kinetic energy before and afterwards and decide what kind of collision it was from the chart at the top of the page.

3) The Olsen Twins are driving identical $1,000 \mathrm{~kg}$ cars (it's a twins thang).
A. Calculate and label the initial momentum of each.
B. When they stop, what is their final momentum?
C. * Calculate and label $\Delta \mathrm{p}$ for each car.
D. Which one had a bigger change of momentum?
E. Which one took more time to stop?
F. Which one needed a bigger force to stop?
G. * Remembering that impulse (Ft) equals the change of momentum, which one had the bigger impulse?
H. * Using a kinematic equation, find the time for Mary Kate to stop. (Show your work or NO credit.)
I. * If Ashley's brakes apply $18,000 \mathrm{~N}$ of force in stopping, use conservation of momentum to calculate Ashley's stopping time. (Show your work or NO credit.)

4) Imagine you are looking down on two moving masses, as shown.
A. * Calculate momentum 1 (the 2 kg object).
B. Calculate momentum 2.
C. Calculate the magnitude of the net momentum.
D. Sketch the direction of $p_{n e t}$ starting at the origin.
E. Just by looking at the numbers, what is the direction of the net momentum?
F. * Calculate the kinetic energy of the 2 kg object.
G. Calculate the kinetic energy of the 4 kg object.
(Notice that the mass of one is doubled, but the velocity of the other is doubled and v is squared, so v matters more.)
H. * Calculate the net kinetic energy of the two objects.

Energy 11, Q8-In the equation $1 / 2 \mathrm{kx}^{2}$, x is the distance a spring stretches or compresses from its equilibrium position. The equilibrium position is the spring's relaxed position. Assume the picture shows different masses on the same spring. The ruler is a meter stick (it is 1 meter long).

A. * What is the equilibrium position for this spring?
B. * What is x for the 100 g mass?
C. * Calculate the spring constant for the spring in N / m.
D. * Calculate the potential elastic energy of the 100 g mass.
E. What is x for the 300 g mass?
F. * Calculate the elastic energy of the 300 g mass.
G. * $\mathrm{X}_{300 \mathrm{~g}}$ is \qquad times as great as $\mathrm{x}_{100 \mathrm{~g}}$.
H. Divide part F by part C.

Notice that x was tripled and PEel increased by a factor of 9 .
You could see this in the equation. Since x is squared $\left(1 / 2 k x^{2}\right)$, 3 times the distance is 9 times the elastic energy.

1A: $-120 \mathrm{kgm} / \mathrm{s}$ (moving left) 1D: Perfectly inelastic: they combine afterwards. $1 \mathrm{E}:-1.33 \mathrm{~m} / \mathrm{s}$
2A: $-2 \mathrm{~m} / \mathrm{s} \quad 2 \mathrm{~B}: \Sigma \mathrm{KE}_{\text {before }}=74 \mathrm{~J}$ do the after $\quad 3 \mathrm{C}:-30,000 \mathrm{kgm} / \mathrm{s}$ (final minus initial) 3 G : same
$3 \mathrm{H}:-10$ points for not showing how you get this answer. Find a kinematic equation, work it out. Don't just write the answer.
Answer: 3.33 sec 3I: Hint: $\mathrm{p}_{\text {before }}-\mathrm{I}=\mathrm{p}_{\text {after }} \quad$ 4A: $-24 \mathrm{kgm} / \mathrm{s}$ (down or left is neg)
4F: 144 J
E11Q8) A: 10 cm or 0.1 m ;
D: 0.25 J
4H: 216 J (scalars)
$B: x=0.05 \mathrm{~m} \quad \mathrm{C}$: divide newtons by meters and get $20 \mathrm{~N} / \mathrm{m}$
F: 0.225 J
G: 3 times as great.

