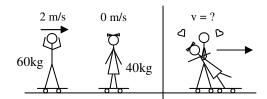

Due Wed, Dec 5


2012 PreAP Momentum 3

- 1) * A 6 kg object speeds up from 5 m/s to 20 m/s. Find Δp .
- 2) A 10 kg object slows down from 25 m/s to 5 m/s. Find Δp .
- 3) * What is the impulse for Q1 above: What is the impulse for Q2 above:
- 4) Can an object ever have a negative kinetic energy? Why or why not?
- 5) Can an object ever have a negative momentum? Why or why not?
- 6) If an object's kinetic energy is zero, what is its momentum?
- 7) Use the equations at the right to answer the following questions. Note: p_{1+2} means a the combination of objects 1 and 2.
 - A. ____* Two objects at rest push off from each other.
 - B. ____* Two people in moving bumper cars collide and bounce off.
 - C. ____* A skateboarder is moving and throws something.
 - D. ____ A person pushes on a car that is already rolling.
 - E. ____ A football player catches a football.
 - F. ____ Two moving objects collide, stick together, and stop.
- A) $p_B + I = p_A$
- D) $p_{1+2B} = p_{1A} + p_{2A}$
- B) $p_{1B} + p_{2B} = p_{1A} + p_{2A}$
- E) $p_{1B} + p_{2B} = 0$
- C) $p_{1B} + p_{2B} = p_{1+2A}$
- F) $0 = p_{1A} + p_{2A}$
- 8) * If the net momentum before equals the net momentum after, is there an external impulse?
- 9) A 2 kg object going 30 m/s feels a -4 N force for 8 seconds, find the object's final velocity. Conservation of Momentum Equation: Solve:

- 10) A 3 kg cannonball is shot from a 200 kg cannon. The cannon recoils backwards at 0.4 m/s backwards. What is the velocity of the ball after it is shot?
 - A. Since the ball is sitting in the cannon, beforehand, what is the initial velocity of the cannon and ball?
 - B. What is the net momentum before?
 - C. Since momentum MUST be conserved, how much total momentum must there be afterwards?
 - E. Is the final velocity of the cannon + or -?
 - F. * Under the diagram, solve for the final velocity of the ball.
 - G. Calculate the final kinetic energies of each object.
 - H. Which one had the greater velocity?
 - I. Which one had the greater kinetic energy?
- 11) * What is the net momentum of the two objects shown? (Your answer will have variables in it.)

12) Slim Jim decides to learn to skate board. Though he is learning very fast, he is distracted by a beautiful girl and "meets" Slim Kim. We know Jim is 60 kg. Kim is only 40 kg.

A. * How much total momentum is there before?

B. How much momentum must there be after?

C. As a combined object, is their combined mass greater or less?

D. So their velocity must go up or down?

E. * Under the diagram, calculate the final velocity of the two.

From "PreAP Energy 11" (Problems 3 –7)

13) A spring has a spring constant of 50 N/m. How much work must be done to stretch the spring 0.25 m?

14) A 45 N object is accelerated from rest to 12 m/s. How much work was done on the object?

15) * How much energy does a 60 W light bulb use in 3 minutes?

16) To overcome friction, a force of 16 N must be applied to keep an object moving at a constant speed of 3 m/s. How much power was generated by the force?

17) * A 120 W motor pulls on a rope. The rope is connected to a 2 kg object. How fast is the mass going after 10 seconds?

Q1:
$$\Delta \rho = \rho_f - \rho_i = 6(z_0) - 6(5) = |z_0 - 30| = 90 |c_0| m/s$$

Q3: $90 \text{ kgm/s} = \text{Impulse} = \Delta p$ Q7A: F; Q7B: B; Q7C: D

Q8: No—internal impulses cancel out (= opp. forces). To Δ the net momentum it must come from outside the system: external impulse

10F: 26.7 m/s; Equation: 0 = 200(-4) + 3v

11: $2m_1 + 4v_2$ (generic) or $2m_1 - 4v_2$ (since right object is moving to the left)

12A: 120 kgm/s 12E: 1.2 m/s 15: 10,800 J 17: 34.6 m/s