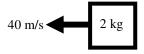
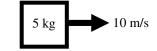
2012 PreAP Momentum 1

Variable	Units	Variable Name	Notes:
p (small)	kgm/s	momentum	How hard it is to stop something. Can be neg or 0.
J	kgm/s or Nsec	Impulse	Causes a change of p.

p = mv
J = Ft
$p_{\text{net}} = p_1 + p_2$

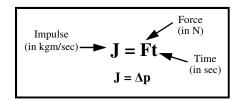

- 1) * A 35 kg object has -450 kgm/s of momentum. Calculate its velocity.
- 2) An object has 5000 kgm/s of momentum when it is moving 25 m/s. Calculate its mass.
- 3) Which has more momentum? (choose one for each)


A. A car when going fast or slow?

- B. A heavy or light object going 10 m/s?
- 4) Which of the following has the most inertia?

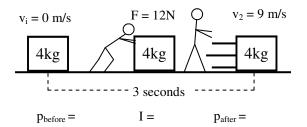
A. * A car when going fast or slow?

- B. A heavy or light object going 10 m/s?
- 5) Find the momentum of each of the following objects:

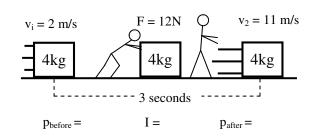


A. _____

B. _____


C.

- 6) Which of the objects in #5 has the momentum with the greatest <u>magnitude</u> (disregarding direction)?
- 7) Which of the objects in #5 has the most **inertia**?
- 6) * Find the net momentum (total) of all of the objects in #5 above (find Σp).
- 7) A 10 kg object is 5 m/s moving to the left while a 3 kg object is going 4 m/s to the right. (*Remember that left is negative.*)
 - A) Find the momentum of the 10 kg object (we'll call this momentum 1 or "p₁"):
 - B) Find the momentum of the 3 kg object (p_2) :
 - C) Find the net momentum of both objects (Σp).
- 8) * A 25 kg object moving 3 m/s to the right while a 30 kg object is moving 4 m/s to the right (yes, same direction). Calculate p_{net} .
- 9) A 2 kg object initially going 4 m/s to the right is later going 8 m/s. Find Δv . (Remember that $\Delta = final initial$.)
- 10) * A 3 kg object going 6 m/s to the right ends up going 3 m/s to the left. Being careful of negatives and positives, find the change of momentum of the object.



Lecture time: In the last chapter Work caused a change of energy because the units for work are the same as for energy: joules.

It turns out that Ft (force times time) has the same units as momentum. Therefore: an impulse causes a change of momentum.

- 11) Slim Jim pushes on a 4 kg box for 3 seconds.
 - A. Under the diagram, calculate the momentum before and after and the impulse Jim gave to the box.
 - B. * What does the impulse equal?

- 12) This time Slim Jim pushes on an object that was already moving.
 - A. Under the diagram, calculate the momentum before and after and the impulse Jim gave to the box.
 - B. What does the impulse equal?

So, this is our equation: $\Sigma p_{before} \pm I = \Sigma p_{before}$. Again, this is the same as in energy, where: $\Sigma E_{before} \pm W = \Sigma E_{before}$.

Q1: -12.9 m/s Q4A: inertia is only about mass, so "same"

Q6: -30kgm/s (add 'em up). Q8: 195 kgm/s Q10: -27kgm/s = $p_{final} - p_{initial}$

Q11B: $I = p_{final}$