1. For each of the masses below decide if the $\Delta \mathrm{p}$ is + or - and calculate $\Delta \mathrm{p}$.

A. $\Delta \mathrm{p}:+$ or $-?$

* $\Delta \mathrm{p}=$ \qquad

Remember when drawing vectors, longer arrows $=$ greater magnitude.

2. A. If $\mathrm{p}_{1}=\mathrm{p}_{2}$ and m_{2} is moving faster, which is more massive: m_{1} or m_{2} ?
B. * Draw the $\mathrm{p}_{\text {net }}$ of the system.
3. A. If $p_{3}=2 p_{4}$, what is the velocity of the 4 g mass?
B. Draw $p_{n e t}$.

4. The momentum of m_{1} and $p_{\text {net }}$ are given.
A. *Draw the momentum of m_{2}.
B. If $m_{1}=m_{2}$, which mass is moving faster?
5. Three hockey pucks are on frictionless ice. Two hockey pucks slam into and attach to the third puck.
A. Since they stick together, $\mathrm{m}_{\text {final }}=$
B. * Calculate the initial net momentum.
C. What must be the final net momentum?
D. Calculate the final velocity of the combined object.
(Velocity is a vector, so magnitude and direction.)

6. A 12 kg object is moving $20 \mathrm{~m} / \mathrm{s}$ in the positive direction when it encounters the forces shown on the graph below.

A. When is the object feeling a positive acceleration?
B. When is the object feeling no acceleration?
C. When is the object experiencing a negative acceleration?
D. * Calculate the impulse on the object.
E. Calculate the change of momentum of the object.
F. Calculate its final momentum.
G. Calculate its final velocity.

Q1A: change is negative, since it started + and ended $-. \Delta p=-846 \mathrm{kgm} / \mathrm{s} \quad \mathrm{Q} 1 \mathrm{~B}:+$ change; $\Delta \mathrm{p}=640 \mathrm{kgm} / \mathrm{s}$
Q2B: Crazy and Lazy, where p1 and p2 are crazy.
Q4A: $p_{\text {net }}$ is Lazy. You have one of crazy's paths. Find the other one that makes Lazy's path.
Q5A: Find p 1 and p 2 , then do pyth and inverse tan to find $\mathrm{p}_{\text {net }}$. Be sure to do a quadrant check for the angle.
Q6D: Find the area of the graph.

