Due Tues., Dec 13

2011 PreAP Momentum 8

1. For each of the masses below decide if the Δp is + or – and calculate Δp .

Remember when drawing vectors, longer arrows = greater magnitude.

- 2. A. If $p_1 = p_2$ and m_2 is moving faster, which is more massive: m_1 or m_2 ?
 - B. * Draw the p_{net} of the system.
- 3. A. If $p_3 = 2p_4$, what is the velocity of the 4g mass?

B. Draw pnet.

- 4. The momentum of m_1 and p_{net} are given. A. *Draw the momentum of m_2 .
 - B. If $m_1 = m_2$, which mass is moving faster?
- Three hockey pucks are on frictionless ice. Two hockey pucks slam into and attach to the third puck. A. Since they stick together, $m_{final} =$ B. * Calculate the initial net momentum. C. What must be the final net momentum? D. Calculate the final velocity of the combined object. (Velocity is a vector, so magnitude and direction.) Before 0 m/s 8 kg 8 m/s 5 kg 5 kg

5.

After

6. A 12 kg object is moving 20 m/s in the positive direction when it encounters the forces shown on the graph below.

- A. When is the object feeling a positive acceleration?
- B. When is the object feeling no acceleration?
- C. When is the object experiencing a negative acceleration?
- D. * Calculate the impulse on the object.
- E. Calculate the change of momentum of the object.
- F. Calculate its final momentum.
- G. Calculate its final velocity.

Q1A: change is negative, since it started + and ended -. $\Delta p = -846$ kgm/s Q1B: + change; $\Delta p = 640$ kgm/s Q2B: Crazy and Lazy, where p1 and p2 are crazy.

- Q4A: p_{net} is Lazy. You have one of crazy's paths. Find the other one that makes Lazy's path.
- Q5A: Find p1 and p2, then do pyth and inverse tan to find p_{net} . Be sure to do a quadrant check for the angle.
- Q6D: Find the area of the graph.