

- C. What kind of energy does the object gain?
- D. How much energy does it have afterwards?
- E. Calculate the final speed of the object.

- 4. A 2 kg object moves up a 6 m long ramp, which is tilted at an angle of 25°.
 - A. What kind of energy did it start with?
 - B. What kind of energy did it end up with?
 - C. Calculate its final energy.
 - D. If there is no friction on the ramp, how much kinetic energy did it have at the bottom?
 - Slim Jim lifts a 3kg ball from the ground. He lifts it above 5. his head and drops it onto a spike.
 - A. What kind of energy does the ball have:

- B. Calculate the energy the object has at position B.
- C. How much energy must the object have at E just before it hits the spike?
- D. Where does all the energy go?
- k = 60N/mBefore 5kg x=0.25m 5kg
- 6. A 5kg object compresses a spring 0.25m.
 - A. Calculate the energy it has when the spring is compressed.
 - B. What kind of energy does the object have when released?
 - C. If there was no friction on the surface, how much energy does the mass have after released?
 - D. Calculate the velocity of the object afterwards.

Using the "Energy Transfer" notes:

- 7. How fast you transfer energy to an object is called:
- 8. Motor A has a rating of 300 W. Motor B has a rating of 200 W.
 - A. Which motor is more powerful?
 - B. How long would it take Motor A to do 6000 J of work?
 - C. How long would it take Motor B to do 6000 J of work?
 - D. Which motor did the work quicker?
 - E. Which motor did more work?
- True or false (and why)?: "A more powerful object does more work." 9.

Using the "Conservation of Energy" notes, let's start to learn how to write Conservation of Energy equations. You already know the summation symbol (Σ). Now we are going to use it with energy.

Conservation of Energy: $\Sigma E_{before} \pm W_{external} = \Sigma E_{after}$

 $\Sigma E_{before} \pm W_{external} = \Sigma E_{after}$

Input types of E: Substitute formulas:

Put in numbers:

Solve for v:

- 10. Slim Jim pushes a 15kg object. He uses 5N for 14m.
 - A. What kind of energy does it have before?
 - B. Does the object gain or lose energy?
 - C. What kind of energy does it have after?
 - D. Put the information from A-C into the Law of Conservation of Energy.
 - E. Substitute the equations for each kind of energy.
 - F. Put in the numbers from above and solve for the final velocity of the object.

For this next section there is a study help.

11. Match the Conservation of energy equations at the right with the following situations.

- 1. Ek -W = Ek A. An object is thrown into the air. Find how high it goes.
- 2. Ep = Ep + Ek
- 3. Ek = Ep
- 4. Ek W = 0
- 5. PEel = Ek + Ep
- 6. 0 + W = Ek
- 7. 0 + W = PEel
- B. ____ An object at rest is moved.
- C. ____ A moving object slows down due to friction.
- D. ____ An object is dropped. How fast is it going part way down?
- E. ____ A spring is compressed.
- F. ____ A compressed spring shoots an object into the air.
- G. ____ A moving object is stopped.