

1. The above sequence shows Slim Jim lifting a medicine ball above his head and then dropping it onto a lever.
A. What kind of energy does the ball start with?
B. Calculate the ball's energy in part II.
C. * How much total energy does the ball have as it falls?
D. * In part IV, how much energy does the ball have?
E. So, how much energy did the ball lose in part III?
F. * If the ball lowers the lever 140 cm , what is the average force applied by the lever?
G. How much energy does the 10 kg box have in part IV?
H. * Use the equation for efficiency at the right to calculate the efficiency of this energy transfer.

$$
E f f=\frac{W_{\text {out }}}{W_{\text {in }}} \times 100
$$

2. A 2 kg ball is dropped from an 8 m tall ledge. There is no air friction.
A. * How fast is it going when it is still 2 m above the ground? (Hint: remember that you can set $\mathrm{PE}=$ to 0 at any point.)

The ball then crushes a box as it stops at the bottom.
B. * Since there is no air friction, how much total energy does the ball have just before it hits the box?
C. * Use Conservation of Energy to solve for the average force applied by the box to stop the ball.
3. An 8 kg object is pushed by a 12 N force for 5 m to accelerate it from $2 \mathrm{~m} / \mathrm{s}$ to $4 \mathrm{~m} / \mathrm{s}$. Do your work under the diagram.

A. * Before you calculate, since the velocity is doubled, by how much does the kinetic energy change (use the equation)?
B. Calculate the energies and work done.
C. * How much mechanical energy was gained by the object?
D. How much energy did the force try to add to the object?
E. * Calculate the efficiency of the energy transfer.
F. Where did the lost energy go?
G. * How did the total energy of the universe change?

More on back.

No friction
4. Slim Jim pushes on a 50 N object as shown.
A. * Calculate the normal force acting on the box.

Remembering that only the parallel force does work.
B. * If the box moves 12 m , how much work did Slim Jim do on the box?

	V	h
Object I	$10 \mathrm{~m} / \mathrm{s}$	
Object II	$20 \mathrm{~m} / \mathrm{s}$	
Object III	$30 \mathrm{~m} / \mathrm{s}$	

5. Two objects are dropped from rest from different heights.
A. * Just before it hits the ground Object I is going $10 \mathrm{~m} / \mathrm{s}$, how high was it dropped from?
B. * Object II was dropped from rest and is going $20 \mathrm{~m} / \mathrm{s}$ just before it hits the ground, how high was Object II dropped from?
C. Put this information into the table.
D. If a third object were dropped from rest, how high would it have to be dropped from to have a velocity of $30 \mathrm{~m} / \mathrm{s}$ at the ground (without calculating).

See the pattern? Why does it work this way, because $(1 / 2) m v^{2}=m g h$. Keeping everything but v and h as constants $v^{2} \propto$ (is proportional to) h. So $2 v$ results in $4 h$.

	V	x
Object I	$2 \mathrm{~m} / \mathrm{s}$	
Object II	$4 \mathrm{~m} / \mathrm{s}$	
Object III	$6 \mathrm{~m} / \mathrm{s}$	

6. Three 4 kg objects are moving and stop by compressing a spring that has a spring constant of $16 \mathrm{~N} / \mathrm{m}$.
A. * Object I is moving $2 \mathrm{~m} / \mathrm{s}$. How far is the spring compressed?
B. * Object II is moving $4 \mathrm{~m} / \mathrm{s}$. How far is the spring compressed?
C. Object III is moving $6 \mathrm{~m} / \mathrm{s}$. Without calculating (using the trend), how far is the spring compressed?

Why? Because $(1 / 2) m v^{2}=(1 / 2) k x^{2}$. So $v^{2} \propto\left(\right.$ is proportional to) x^{2}. So $v \propto x$. So doubling v doubles x, etc.

1 C : same as the PE in part II: $120 \mathrm{~J} \quad 1 \mathrm{D}: 0 \mathrm{~J}$ (at rest, on ground) $\quad 1 \mathrm{~F}: 85.7 \mathrm{~N} \quad(\mathrm{~W}=\mathrm{Fd}=120 \mathrm{~J}$ lost; $\mathrm{d}=1.4 \mathrm{~m})$
$1 \mathrm{H}: 58 \%=\mathrm{mgh}$ gained by box/ energy lost by ball $=70 / 120$
2A: $10.95 \mathrm{~m} / \mathrm{s} ; \quad 2 \mathrm{~B}: 160 \mathrm{~J}$, which is mgh for the top. Just before it hits the box it will have mostly KE, but total still $=160 \mathrm{~J}$.
2C: Box does -160 J of work. Find d.
3A: since v is squared, doubling v, means KE is $x 4$
3C: $48 \mathrm{~J}(64-16) \quad$ 3E: 80% 3G: no change, ever (it just changes type)
4A: $50+20=70 \mathrm{~N}$. Only sin component changes normal force.
4B: 415.2 Joules
5A: $5 \mathrm{~m} \quad$ (use $\mathrm{PE}=\mathrm{KE}$)
5B: 20 m
6A: 1 m (use $\mathrm{KE}=$ PEel)
6B: 2 m

