PreAP Energy 7

From now on I strongly suggest that you write your Conservation of Energy equation for each problem.
It tells you "stuff". I assume, now, that you can all write them. See the Energy Study Helps, if you need more help.

1. A 20 kg object is pushed by a 150 N force acting at 40° to the ground.
A. * How much work is done on the object after 8 m ?
B. How fast is the object moving after 8 m ?
2. A 4 kg object is moving $2 \mathrm{~m} / \mathrm{s}$ when it is pushed by a 5 N force for 7 m along a level surface. How fast is it going afterwards?
3. A 100 N object is at rest on the ground. It is lifted up 8 m .
A. Is 100 N the mass or the weight of the object?

So, N is a force or $m g$ in $m g h$, already...
B. * How much work was done to lift the object?
C. How much gravitational potential energy does it gain?
D. * How long would it take a 400 W motor to lift it?
4. Let's learn to break up a unit, the joule:
A. Write the basic equation for work:
B. * Substitute in what " F " equals (and don't get angry):
C. Substitute in the units for each one and combine like terms.
D. * So, what does a joule equal in the most basic units?
5. Using what you just found, give the units of power using only basic units.
6. A 5 kg mass is at rest on a level surface. It is pushed until it reaches $12 \mathrm{~m} / \mathrm{s}$ in 8 seconds.
A. How much work was done on the object? (Set up your Conservation of Energy equation, first.)
B. How much power was used to push the object?
7. For each of the following, is work being done (and why or why not)?
A. ___ A person holds a book in their hands for 20 minutes.
B. ___ A force pushes down on a table.
C. ___A person pushes a sled across the snow.
D. ___ * Gravity keeping the moon moving around the earth.

Definition: Mechanical energy $=$ any $P E$ or $K E$.
8. A 6 kg box is moving $8 \mathrm{~m} / \mathrm{s}$ when it slides over a 3 m long patch of sandpaper. Afterwards the box is moving $3 \mathrm{~m} / \mathrm{s}$.
A. How much mechanical energy did it lose?
B. Where was the energy "lost" and what did it become?

9. Three identical 1 kg objects are placed as shown in the diagram.
A. Since object T is sitting on the ground, how much potential energy does it have?
B. How much potential energy does object U have relative to the middle object?

This is how much work would be done to lift U to this point.
C. If T is at $\mathrm{h}=0 \mathrm{~m}$, then object S is at $\mathrm{h}=$ \qquad . (below 0)
D. * What is the potential energy of object S relative to the ground?

Object S is in a hole, so it would take energy to lift it out. This is how an object can have negative potential energy and why we usually ASSUME that we have defined PE=OJ at the ground. But PE can be defined anywhere. Let's see how that could be helpful...
10. A ball is dropped from 8 m . How fast is it going 3 m above the ground?
A. If we define point Q as our reference point $(\mathrm{h}=0 \mathrm{~m})$, how far did it drop?
B. ${ }^{*}$ Calculate its speed at point Q .

1A) 919 J | 3B) 800 J | 3D) 2 sec | 4B) $\mathrm{W}=\mathrm{mad}$ | $4 \mathrm{D}) \mathrm{kgm}^{2} / \mathrm{s}^{3}$ |
| :--- | :--- | :--- | :--- |
| 9D) $\mathrm{mgh}=1(10)(-2)=-20 \mathrm{~J}$ | 10B) No (figure out why) $10 \mathrm{~m} / \mathrm{s}$ | | |

