2009 PreAP Forces 2

Notes you will need: "Normal Force"; "Surface Friction"; "Newton's Second Law".

1. Calculate the normal force on each of the objects below.
A.

B. $\mathrm{F}=10 \mathrm{~N}$

C.

D.

E.

F.

2. On letter D above, if $\mu_{\mathrm{s}}=0.24$ and $\mu_{\mathrm{k}}=0.10$,
A. Calculate both frictions on the 8 kg object.
3. Heavier, lighter, or same as normal weight?
A. \qquad When an elevator starts moving up?
B. \qquad When an elevator is between floors?
C. \qquad When an elevator is stopping while moving up?
D. \qquad When an elevator starts down?
E. \qquad When an elevator is stopping while moving down?

4. The diagram above shows a cart on a roller coaster.
A. \qquad At which position do you feel heavier?
B. ____At which position do you feel lighter?
C. ___ At which position does the track have to push harder on the cart?
D. \qquad Where is the greatest normal force acting on the object?
5. A 50 kg person is in an elevator. The elevator accelerates up at $3 \mathrm{~m} / \mathrm{s}^{2}$. A. Find the normal force on the person.
B. How heavy do they "seem"?

More on Back

6. Static or Kinetic Friction?
A. ___ Usually the smaller one.
B. ___ If this is greater than the applied force, the object will slow down and eventually stop.
C. __ Between your shoes and the ground when you are walking normally.
D. ___ Use to calculate acceleration.
E. ___ When you are going down a slide.
F. How much force is needed to keep an object sliding.
G. __ When a car "loses traction".
H. ___ Only exists when the object is not moving.
I. ___ Maximum friction before an object slides.
7. For the mass at the left:
A. How much force is necessary to keep this object moving?
B. How much force is necessary to start this object sliding?
C. If this object starts at rest, will this object slide?
D. Find the acceleration of the object.
E. Find the normal force on the object.
F. Work backwards to find μ_{s} and μ_{k}.
8. For the 4 kg object at the right.
A. Since the 25 N force is pulling up (above the horizon), does it increase or decrease the normal force?
B. Calculate the normal force on the object.

B. If $\mu_{\mathrm{s}}=0.35$ and $\mu_{\mathrm{k}}=0.2$, find Fs and Fk.
C. How much force is pulling to the right?
D. Will the object slide? (Prove it.)
E. If it does slide find its acceleration.
9. The cart at the right has two equal masses pulling on it.
A. Does the cart have to be at rest?
B. Could the cart be accelerating?
C. Does the cart have balanced or unbalanced forces acting on it?

D. Therefore, the velocity has to be:
E. Is it at equilibrium or not?
10. Tell me everything you know about objects at equilibrium. (v, a, direction, forces, $\Delta \mathrm{v} \ldots$)
11. A 15 kg object is floating in space. Calculate its mass.
12. A 28 N object is sitting on a desk. Calculate its weight.

From the notes: "Newton's Second Law" [study help available]. Look at the pictures below. You have to identify the forces acting on each object. Take Mass 5 for example. In the y-direction (vertical) the arrow shows a force pulling up (F). Even though they are not drawn, you know that weight is pulling down $\left(F_{W}\right)$ and normal force is pushing up (F_{N}) [it is on a surface]. So the $\Sigma F_{y}=$ ma becomes: $F-F_{W}+F_{N}=m a$. In the x-direction there is no friction, so the only horizontal force acting on the object is tension (there is a rope), so $\Sigma F_{x}=$ ma becomes: $T=m a$.
13. Match the following Newton's Second Law equations with the correct mass at the right. (Hint: draw the forces on each object; F_{f} is friction.)
A. \qquad $\mathrm{T}=\mathrm{ma}$
B. \qquad $\mathrm{T}-\mathrm{T}-\mathrm{F}_{\mathrm{W}}=\mathrm{ma}$
C. \qquad $\mathrm{F}_{\mathrm{N}}-\mathrm{F}-\mathrm{F}_{\mathrm{W}}=\mathrm{ma}$
D. \qquad $\mathrm{T}-\mathrm{F}_{\mathrm{f}}=\mathrm{ma}$
E. \qquad $\mathrm{F}_{\mathrm{N}}+\mathrm{F}-\mathrm{F}_{\mathrm{W}}=\mathrm{ma}$
F. \qquad $\mathrm{F}_{\mathrm{N}}+\mathrm{F}-\mathrm{F}-\mathrm{F}_{\mathrm{W}}=\mathrm{ma}$
G. \qquad $T-F_{f}=0$
H. \qquad $\mathrm{T}-\mathrm{T}-\mathrm{F}_{\mathrm{f}}=\mathrm{ma}$
I. \qquad $\mathrm{F}_{\mathrm{W}}=\mathrm{ma}$
J. \qquad $\mathrm{T}-\mathrm{F}_{\mathrm{W}}=\mathrm{ma}$
K. \qquad $\mathrm{F}_{\mathrm{N}}-\mathrm{F}_{\mathrm{W}}=\mathrm{ma}$

L. \qquad $\mathrm{F}-\mathrm{T}=\mathrm{ma}$

Falling in a vacuum

At constant speed, with friction.

