## A-Day: Due Wed., 10/21 B-Day: Due Thurs., 10/22

## 2009 PreAP Forces 2

Notes you will need: "Normal Force"; "Surface Friction"; "Newton's Second Law".

1. Calculate the normal force on each of the objects below.



- 2. On letter D above, if  $\mu_s = 0.24$  and  $\mu_k = 0.10$ , A. Calculate both frictions on the 8 kg object.
- 3. Heavier, lighter, or same as normal weight?
  - A. \_\_\_\_\_When an elevator starts moving up?
  - B. \_\_\_\_\_When an elevator is between floors?
  - C. \_\_\_\_\_When an elevator is stopping while moving up?
  - D. \_\_\_\_When an elevator starts down?
  - E. \_\_\_\_When an elevator is stopping while moving down?



- The diagram above shows a cart on a roller coaster.
- A. \_\_\_\_At which position do you feel heavier?
- B. \_\_\_\_\_At which position do you feel lighter?
- C. \_\_\_\_At which position does the track have to push harder on the cart?
- D. \_\_\_\_\_Where is the greatest normal force acting on the object?
- A 50 kg person is in an elevator. The elevator accelerates up at 3 m/s<sup>2</sup>.
  A. Find the normal force on the person.



B. How heavy do they "seem"?



- 6. Static or Kinetic Friction?
  - A. \_\_\_\_ Usually the smaller one.
  - B. \_\_\_\_\_ If this is greater than the applied force, the object will slow down and eventually stop.
  - C. \_\_\_\_\_ Between your shoes and the ground when you are walking normally.
  - D. \_\_\_\_\_ Use to calculate acceleration.
  - E. \_\_\_\_\_ When you are going down a slide.
  - F. \_\_\_\_ How much force is needed to keep an object sliding.
  - G. \_\_\_\_ When a car "loses traction".
  - H. \_\_\_\_ Only exists when the object is not moving.
  - I. \_\_\_\_ Maximum friction before an object slides.



- 7. For the mass at the left:
  - A. How much force is necessary to keep this object moving?
  - B. How much force is necessary to start this object sliding?
  - C. If this object starts at rest, will this object slide?
  - D. Find the acceleration of the object.
  - E. Find the normal force on the object.
  - F. Work backwards to find  $\mu_s$  and  $\mu_k$ .
- 8. For the 4 kg object at the right.
  - A. Since the 25 N force is pulling up (above the horizon), does it increase or decrease the normal force?
  - B. Calculate the normal force on the object.



- B. If  $\mu_s = 0.35$  and  $\mu_k = 0.2$ , find Fs and Fk.
- C. How much force is pulling to the right?
- D. Will the object slide? (*Prove it.*)
- E. If it does slide find its acceleration.
- 9. The cart at the right has two equal masses pulling on it.
  - A. Does the cart have to be at rest?
  - B. Could the cart be accelerating?
  - C. Does the cart have balanced or unbalanced forces acting on it?
  - D. Therefore, the velocity has to be:
  - E. Is it at equilibrium or not?



- 10. Tell me everything you know about objects at equilibrium. (v, a, direction, forces,  $\Delta v...$ )
- 11. A 15 kg object is floating in space. Calculate its mass.
- 12. A 28 N object is sitting on a desk. Calculate its weight.

From the notes: "Newton's Second Law" [study help available]. Look at the pictures below. You have to identify the forces acting on each object. Take Mass 5 for example. In the y-direction (vertical) the arrow shows a force pulling up (F). Even though they are not drawn, you know that weight is pulling down ( $F_W$ ) and normal force is pushing up ( $F_N$ ) [it is on a surface]. So the  $\Sigma F_y$  = ma becomes:  $F - F_W + F_N$  = ma. In the x-direction there is no friction, so the only horizontal force acting on the object is tension (there is a rope), so  $\Sigma F_x$  = ma becomes: T = ma.

13. Match the following Newton's Second Law equations with the correct mass at the right. (*Hint: draw the forces on each object;*  $F_f$  *is friction.*)



At constant speed, with friction.