Σ is the Greek letter "sigma" for "summation"

1. A 16 N force sitting on a table is pulling up at an angle of 30° on a 6 kg object. Friction opposes the force with 3 N to the left.

A. Since $\mathrm{Fw}=\mathrm{mg}$ and $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, what is the weight of the object?
B. Since Fw pulls toward the center of the earth, draw an arrow showing the amount of weight acting on the object.
C. * In order for the object to leave the table there must be at least how much force pulling up on it?
D. So, obviously there is not enough force to lift the object and it stays on the table. Therefore it is just sitting on the table and $\mathrm{a}_{\mathrm{y}}=$
E. Also, since it is sitting on the table there must be a force pushing up from the table to support it. This force is called the:
$\Sigma F_{y}=m a_{y} \quad \Sigma F_{x}=m a_{x}$
F. Draw the normal force pushing up on the object from below.
G. Starting in the y-direction, put all of the vertical forces (or components) under the left side of the equation, INCLUDING F_{N}, which is your unknown.
H. Put $0 \mathrm{~m} / \mathrm{s}^{2}$ in for a_{y} (see E above) and put in 6 kg for mass.
I. * Solve for F_{N} in the vertical direction.
J. Put in all your horizontal forces (or components).
K. * Solve for a_{x}.
L. Since $F_{\text {kinetic friction }}=\mu_{k} F_{N}$, solve for μ_{k}.
2. A 45 N force pushes on a 8 kg object an angle of 48°. The coefficient of friction is given.
A. Draw a force diagram on the dot. Do not draw components.
B. * Since the 45 N force is pushing roughly left, which way does friction point?
C. * Since the 45 N force is not vertical or horizontal, resolve it into its x and y components. Draw and label it on the picture, but not your force diagram.
D. Calculate and draw the force of weight on the object.
E. In the vertical direction put in all of your vertical forces (including components).
F. Since it is being pushed down into the surface, there is no way it could be moving up, so a_{y} must $=$ \qquad . (Put in to the equation.)

$$
\Sigma \mathrm{F}_{\mathrm{y}}=\mathrm{ma}_{\mathrm{y}}
$$

$$
\Sigma \mathrm{F}_{\mathrm{x}}=\mathrm{ma}_{\mathrm{x}}
$$

$$
\mu_{\mathrm{k}}=0.15
$$

G. * In the y-direction calculate the normal force on the object.
H. In the horizontal direction put in all of your horizontal forces (including components).
I. Put in $\mathrm{F}_{\mathrm{f}}($ force of friction $)=\mu \mathrm{F}_{\mathrm{N}}$.
J. * Put in what you know for μ and F_{N} into the x -direction and solve for a_{x}.

1C) 60 N
1I) 52 N
1K) $1.82 \mathrm{~m} / \mathrm{s}^{2}$
2B) to the right
2C) $\mathrm{Fx}=45 \cos 48^{\circ}=30.1 \mathrm{~N}$, but down and to the left, so it will be neg in the x-dir equation. $\mathrm{Fy}=45 \sin 48^{\circ}=33.4 \mathrm{~N}$
2G) 113.4 N
2 J) $-1.6 \mathrm{~m} / \mathrm{s}^{2}$ (neg means the 45 N force to the left is greater than friction to the right and the object accelerates to the left.)

