Due Tues., Oct 23

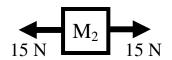
2012 Forces 1

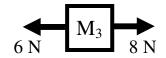
G.

You will need these notes: "Forces and Newton's First Law" and "Types of Forces";

- 1. For each of the following pairs of objects, which one has more inertia?
 - A. * A freight train or a car?
 - B. A ping pong ball or a baseball?
 - C. * A fast bowling ball or a slow bowling ball?
- D. A 20 kg mass or a 10 kg mass?
- E. A rock on the earth or a rock in space?
- F. A fast baseball or a bowling ball at rest?
- 2. Identify the following forces as F (applied), T, F_W (weight), F_f (friction), or F_N .
 - A. ____Due to a string.
 - B. ____Opposes weight for objects on surfaces.
 - C. ____You push down on an object on a table, this increase.
 - D. ____Caused by gravity.
 - E. _____Would decrease on the moon.
 - F. _____Decreases if a surface is smooth.
- The board will break if this is too small.

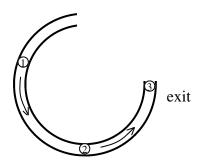
 H.
 _____ Always vertical.


 I.
 _____ If a surface is tilted, this changes direction, too.


_____ You place a heavy object onto a board.

- J. Has the units of newtons.
- K. ____ Doesn't exist for hanging objects.
- 3. While a force is acting on an object, give three things that can happen (top of "Newton's First Law" notes).

4. *Calculate the net force on M_1 .



6. Calculate the net force on M_3 .

- 7. Which of the above masses: M_1 , M_2 , or M_3 ?
 - A. ____ Which could be at rest?
 - B. ____ Acceleration is negative.
 - C. _____ Acceleration is positive.
 - D. _____ Has a net force of 0 N.
 - E. _____ Has a net force (Fnet $\neq 0$)

- 5. Calculate the net force on M_2 .
 - F. ____Has balanced forces.
 - G. ____Could be changing direction.
 - H. _____Has unbalanced forces.
 - I. ____Could be a constant speed.
 - J. ____Could be slowing down to the left.

- 8. A ball is moving inside a tube, as shown on the diagram at the left.A. When it leaves the tube, will it have a circular path or a straight path?
 - B. What do we call any force that keeps an object moving in a circular path?
 - C. At point 1, draw an arrow to show the direction of the velocity of the object. Label it "v".

D. At point 2, draw an arrow (labeled "a") showing its acceleration.

9. Static or kinetic friction?

A Slipping friction.	D Acts to keep an object from sliding.
B Gripping friction.	E Tries to stop an object that is already sliding.
C Depends on the surface's roughness	F Depends on weight of the object, if on a surface.

1A) Train (more mass) 1C) same (same mass) 4) -30+25 = -5 N or 5N left

cstephenmurray.com