2011 PreAP Forces 13

1. The diagram shows a 2 kg projectile AFTER it has been shot.

$\mathrm{A}, \mathrm{B}, \mathrm{C}$ or all 3?
A. \qquad Where is the vertical speed the greatest?
B. ___ Where is the horizontal speed greatest?
C. \qquad Where is the force on the object greatest?
D. \qquad Where is the acceleration the greatest?
2. What is the net force acting on the object at the very top?
3. Slim Jim is also a cave explorer (known as a spelunker). A mining company asks our famous spelunker to explore part of their gold mine. Slim Jim is a slim 60 kg and the bucket is a hefty 980 kg . A. * Calculate the tension in the rope when he begins to accelerate downward at $-1.5 \mathrm{~m} / \mathrm{s}^{2}$.
B. Calculate the tension in the rope when the bucket is lowered at constant speed.
C. When it starts to slow down (just before it stops) it has an acceleration of $+2.4 \mathrm{~m} / \mathrm{s}^{2}$. Calculate the tension in the rope

4. Two objects are connected with a rope. Assume the table and pulley are frictionless.
A. * Which way is positive for the 4 kg mass?
B. * Which way is positive for the 6 kg mass?
C. * Calculate the acceleration and tension of the system.

Need help with proportionality? See notes on back of page.
5. If the distance is doubled, by how much does the torque change? (Hint: Start with the torque equation.)
6. * If one of the masses is doubled and the distance is $1 / 3$ as much, by how much does the gravitational force change?
7. That crazy Slim Jim shots a spring loaded potato gun (I have no idea if the potato is loaded), while on his skate board.
A. What does the potato push on?
B. Does Jim feel a force, too?
C. Will Jim move faster or slower than the potato?
D. Why?
E. Draw a force diagram for Jim and the potato below:

Ok, let's finally solve this misconception.. The spud feels ONE force pushing it to the right.
Jim
Spud
Jim feels ONE force pushing him to the left. These forces are equal but THEY OCCUR ON DIFFERENT OBJECTS. That's the point of the 3rd Law, which doesn't talk about acceleration at all. This is not like two equal forces pushing on an object, causing equilibrium or constant speed. In that case there are two equal objects occurring on the SAME object. (O —and the potato doesn't actually push on Jim. Hmmm, what does????)

3A) $8840 \mathrm{~N}\left(\mathrm{mg}_{\text {total }}=10400 \mathrm{~N}\right)$
4A) right 4 B$)$ down 4 C$) 6 \mathrm{~m} / \mathrm{s}^{2} 6$) see right: $\frac{2}{(1 / 3)^{2}}=\frac{2}{1 / 9}=2\left(-\frac{1}{1}-18\right.$ 7A) the spring

$$
\begin{aligned}
& \mathrm{F}_{1}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}_{1}^{2}} \text { and } \mathrm{F}_{2}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}_{2}^{2}} \\
& \text { Substitute } r_{2}=2 r_{1} \quad \mathrm{~F}_{2}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\left(2 \mathrm{r}_{1}\right)^{2}}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{4 \mathrm{r}_{1}^{2}} \\
& \text { Substitute } \mathrm{r}_{2}=2 r_{1} \quad \mathrm{~F}_{2}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\left(2 \mathrm{r}_{1}\right)^{2}}=\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{4 \mathrm{r}_{1}^{2}} \\
& \text { Pull out } \mathrm{F}_{1} \quad \mathrm{~F}_{2}=\frac{1}{4}\left(\mathrm{G} \frac{\mathrm{~m}_{1} \mathrm{~m}_{2}}{\mathrm{r}_{1}^{2}}\right)=\frac{1}{4} \mathrm{~F}_{1}
\end{aligned}
$$

Understanding proportionality.
Q : If the distance is doubled, by how much does gravity change? $\left(\mathrm{r}_{2}=2 \mathrm{r}_{1}\right)$

Answer: The force is $1 / 4$ as strong.

You should then be able to see that since the r is squared and in the denominator, then put a 2 in, gives a 4 on the bottom $=1 / 4$.

