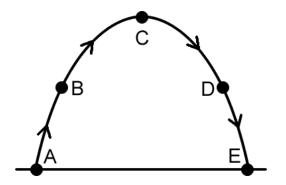
Freefall Examples

1. An object is thrown up 25 m/s. How high up does it go? On the diagram at the right, this example is from A to C.

Variables: Equation:


$$a = -9.8 \text{ m/s}^2$$

 $Vi = 25 \text{ m/s}$
 $Vf = 0 \text{ m/s}$
 $\Delta y =$

$$0^2 = 25^2 + 2(-9.8)\Delta y$$

$$0 = 625 - 19.6\Delta y$$

$$-625 = -19.6\Delta y$$

$$31.9m = \Delta y$$

2. An object is dropped from 18 m. How long does it take for it to hit the ground? *On the diagram: from C to E.*

me ground.	on me anagram. jrom
<u>Variables</u> :	Equation:
$a = -9.8 \text{ m/s}^2$. 1
Vi = 0 m/s	$\Delta y = v_i t + \frac{1}{2} at$
$\Delta y = -18 \text{ m}$	2
t =	$-18 = 0t + \frac{1}{2}(-9.8)$
	$-18 = 0 - 4.9t^2$
	$\frac{-18}{-4.9} = t^2$
	$t^2 = 3.67$
	$t = 1.9 \operatorname{sec}$

3. An object is thrown up 30 m/s. How much time does it take for it to get back to the ground? *On diagram: from A to E.*

	get back to the ground? On diagram: from A to E.	
	Variables:	Equation:
	$a = -9.8 \text{ m/s}^2$	(Since you have all 5 variables you can use any
	Vi = 30 m/s	equation, so use the easiest one)
	Vf = -30 m/s	$v_f = v_i + at$
	$\Delta y = 0 \text{ m}$	$r_f = r_i + ar$
	t =	$v_f = v_i + at$
	-	-30 = 30 - 9.8t
		-60 = -9.8t
-60		
		$\frac{-60}{-9.8} = t$
		$t = 6.1 \operatorname{sec}$