Freefall Examples

1. An object is thrown up $25 \mathrm{~m} / \mathrm{s}$. How high up does it go?

On the diagram at the right, this example is from A to C.
Variables:

> Equation:
$\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{Vi}=25 \mathrm{~m} / \mathrm{s}$

$$
v_{f}^{2}=v_{i}^{2}+2 a \Delta y
$$

$\mathrm{Vf}=0 \mathrm{~m} / \mathrm{s}$
$\Delta y=$ \qquad

$$
\begin{gathered}
0^{2}=25^{2}+2(-9.8) \Delta y \\
0=625-19.6 \Delta y \\
-625=-19.6 \Delta y \\
31.9 \mathrm{~m}=\Delta y
\end{gathered}
$$

2. An object is dropped from 18 m . How long does it take for it to hit the ground? On the diagram: from C to E.
Variables:
Equation:
$\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{Vi}=0 \mathrm{~m} / \mathrm{s}$
$\Delta y=-18 \mathrm{~m}$
$\mathrm{t}=$ \qquad

$$
\begin{gathered}
\Delta y=v_{i} t+\frac{1}{2} a t^{2} \\
-18=0 t+\frac{1}{2}(-9.8) t^{2} \\
-18=0-4.9 t^{2} \\
\frac{-18}{-4.9}=t^{2} \\
t^{2}=3.67 \\
t=1.9 \mathrm{sec}
\end{gathered}
$$

3. An object is thrown up $30 \mathrm{~m} / \mathrm{s}$. How much time does it take for it to get back to the ground? On diagram: from A to E.

Variables:
$\mathrm{a}=-9.8 \mathrm{~m} / \mathrm{s}^{2}$
$\mathrm{Vi}=30 \mathrm{~m} / \mathrm{s}$
$\mathrm{Vf}=-30 \mathrm{~m} / \mathrm{s}$
$\Delta y=0 \mathrm{~m}$
$\mathrm{t}=$

Equation:
(Since you have all 5 variables you can use any equation, so use the easiest one)

$$
\begin{aligned}
& v_{f}=v_{i}+a t \\
& v_{f}=v_{i}+a t
\end{aligned}
$$

$$
-30=30-9.8 t
$$

$$
-60=-9.8 t
$$

$$
\frac{-60}{-9.8}=t
$$

$$
t=6.1 \mathrm{sec}
$$

