Preface: 1) See the hand written notes on proportionality in the notes section for help. 2) Because I am teaching proportionality and not equation memorization, I will give you all of the necessary equations at the left of each question.

1. If the velocity of an object halves, by how much does the centripetal acceleration change?
2. If the potential elastic energy of a spring is one fourth the original energy, by how much has the spring displacement changed?
3. The length of a pendulum has doubled and the acceleration due to gravity is halved. By how much has the pendulum's period changed?
4. One of the masses has doubled and the distance between the masses has halved. How much has the force between them changed?
5. A new conductor has triple the resistivity and half the length of a different conductor. How does the cross-sectional area of the new conductor compare to the first?
6. The kinetic energy is reduced to $1 / 3$ as much as the same time the mass is reduced to $1 / 12$ as much. By how much has the velocity changed?
7. A new planet is found. It has 6 times the mass and a 2 times the gravitational field of the earth. What is the new planet's radius compared to the earth's?

$$
R=\rho \frac{\ell}{A}
$$

$$
a_{c}=\frac{v^{2}}{r}
$$

$$
P E_{\text {spring }}=\frac{1}{2} k x^{2}
$$

$$
T_{\text {pendulum }}=2 \pi \sqrt{\frac{\ell}{g}}
$$

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
$$

$$
K E=\frac{1}{2} m v^{2}
$$

$$
g=G \frac{M}{r^{2}}
$$

Proportionality Questions

Preface: 1) See the hand written notes on proportionality in the notes section for help. 2) Because I am teaching proportionality and not equation memorization, I will give you all of the necessary equations at the left of each question.

1. If the velocity of an object halves, by how much does the centripetal acceleration change?
$a \propto v^{2}$

$$
a_{c}=\frac{v^{2}}{r}
$$

so $a^{\prime}=(\Delta v)^{2} a=\left(\frac{1}{2}\right)^{2} a=\frac{a}{4}$
2. If the potential elastic energy of a spring is one fourth the original energy, by how much has the spring displacement changed?
solve for x, first

$$
P E_{\text {spring }}=\frac{1}{2} k x^{2}
$$

$x^{2}=\frac{2\langle P E\rangle}{K} \quad x=\sqrt{\frac{2\left\langle P_{E}\right\rangle}{k}} \quad x \propto \sqrt{P E} \quad x^{\prime}=\left(\sqrt{Q P_{E}}\right) x=\left(\sqrt{\frac{1}{4}}\right) x=\frac{x}{2}$
3. The length of a pendulum has doubled and the acceleration due to gravity is halved. By how much

$$
\begin{aligned}
& \text { has the pendulum's period changed? } \\
& T \propto \sqrt{\frac{L}{g}} T^{\prime}=\left(\sqrt{\frac{\Delta x}{\Delta \theta}}\right) T=\left(\sqrt{\frac{2}{y_{2}}}\right) T^{\prime}=\sqrt{4} T=2 T
\end{aligned}
$$

$$
T_{\text {pendulum }}=2 \pi \sqrt{\frac{l}{g}}
$$

4. One of the masses has doubled and the distance between the masses has halved. How much has the force between them changed?

$$
F \propto-\frac{m}{r^{2}} \text { so } F^{\prime}=\left(\frac{\Delta m}{\left(\Delta_{r}\right)^{2}}\right) F=-\frac{2}{\left(y_{2}\right)^{2}} F=-\frac{2}{1 / 4} F=8 F
$$

$$
F_{g}=G \frac{m_{1} m_{2}}{r^{2}}
$$

5. A new conductor has triple the resistivity half the length of a different conductor. How does the cross-sectional area of the new conductor compare to the first?

$$
R=\rho \frac{l}{A}
$$

6. The kinetic energy is reduced to $1 / 3$ as much as the same time the mass is reduced to $1 / 12$ as much. By how much has the velocity changed?

$$
K E=\frac{1}{2} m v^{2}
$$

$$
\begin{aligned}
V=\sqrt{\frac{z K E}{m}} \text { so } V \infty \sqrt{\frac{K E}{m}} \text { and } \begin{aligned}
V^{\prime}=\left(\sqrt{\frac{\Delta K E}{\Delta m}}\right) V=\sqrt{\frac{1 / 3}{1 / 2}} V & =\sqrt{\frac{1}{3} \frac{12}{1}} V \\
& =\sqrt{4} V \\
& =2 V
\end{aligned}
\end{aligned}
$$

7. A new planet is found. It has 6 times the mass and a 2 times the gravitational field of the earth. What is the new planet's radius compared to the earth's?

$$
g=G \frac{M}{r^{2}}
$$

$$
\begin{aligned}
r=\sqrt{\frac{G M}{g}} \text { so } r a \sqrt{\frac{M}{g}} \text { and } r^{\prime} & =\sqrt{\frac{\Delta M}{\Delta g}}(r) \\
r^{\prime} & =\sqrt{-\frac{6}{2}} r=\sqrt{3} r
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{P R}{R} \text { so } A \in \frac{R}{R} \quad \text { so } A^{\prime}=\left(\frac{\Delta R}{\Delta R}\right) A=\frac{1 / 2}{3} \quad A=\frac{1}{2} \frac{1}{3} A=\frac{A}{6} \\
& \frac{\downarrow(1 / 2)}{(3 / 1)}=\frac{1}{2} \frac{1}{3}=\frac{1}{6}
\end{aligned}
$$

