Faraday's Law of Magnetic Induction:

$e m f=-N \frac{\Delta[A B(\cos \theta)]}{\Delta t}$

Where:
N is the number of turns or loops of wire
A is the areas of each loop (assumes they are similar) in m^{2}.
B is the magnetic field strength in Teslas.
θ is the angle between the normal of the coil and the direction of B.
t is time in seconds.
But what about Δ ? Notice Δ is on the outside of the parenthesis. This means that for an emf to occur there has to be a change of one of those quantities: A, B, or θ. There must be a change of area (the loops are contracted or expanded), a change of magnetic field strength, or a change of position.

Each of these changes actually changes the B going through the loops. B changing is obvious. If the area changes, then more or less B goes through A (more if A increases). If θ changes more or less B goes through the loops (more if A is perpendicular to B). If θ changes continually (which is the most common method, since it is easier to move A's position in a fixed magnetic field [permanent magnets] than to alter B or adjust A) then you will have to use ω (the angular frequency) which is $\Delta \theta / \Delta t$.

Be sure to remember that Δ always means final - initial. Sometimes it will give a negative value to A or B.
Example: Find the emf of a 3 coil circuit that changes area from $1.2 \mathrm{~m}^{2}$ to $0.8 \mathrm{~m}^{2}$ in 0.12 seconds. The magnetic field strength is 4 Teslas and the angle between the direction of the magnetic field strength and the normal of the coils in 60°.

Assign Variables:
$\mathrm{N}=3$
$\Delta \mathrm{A}=\mathrm{A}_{\text {final }}-\mathrm{A}_{\text {initial }}=0.8 \mathrm{~m}^{2}-1.2 \mathrm{~m}^{2}=-0.4 \mathrm{~m}^{2}$
$\mathrm{B}=4 \mathrm{~T}$
$\theta=60^{\circ}$
$\Delta t=0.12 \mathrm{sec}$

$$
\begin{aligned}
& e m f=-N \frac{\Delta[A B(\cos \theta)]}{\Delta t} \\
& e m f=-3 \frac{\left[-0.4(4)\left(\cos 60^{\circ}\right)\right]}{0.12 \sec } \\
& e m f=-3 \frac{(-1.6)(0.5)}{0.12} \\
& e m f=-3 \frac{(-0.8)}{0.12} \\
& e m f=20 \text { volts }
\end{aligned}
$$

