$$emf = -N \frac{\Delta [AB(\cos \theta)]}{\Delta t}$$

Where:

N is the number of turns or loops of wire A is the areas of each loop (assumes they are similar) in m^2 . B is the magnetic field strength in Teslas. θ is the angle between the normal of the coil and the direction of B. t is time in seconds.

But what about Δ ? Notice Δ is on the outside of the parenthesis. This means that for an emf to occur there has to be a change of one of those quantities: A, B, or θ . There must be a change of area (the loops are contracted or expanded), a change of magnetic field strength, or a change of position.

Each of these changes actually changes the B going through the loops. B changing is obvious. If the area changes, then more or less B goes through A (more if A increases). If θ changes more or less B goes through the loops (more if A is perpendicular to B). If θ changes continually (which is the most common method, since it is easier to move A's position in a fixed magnetic field [permanent magnets] than to alter B or adjust A) then you will have to use ω (the angular frequency) which is $\Delta\theta/\Delta t$.

Be sure to remember that Δ always means final – initial. Sometimes it will give a negative value to A or B.

Example: Find the emf of a 3 coil circuit that changes area from 1.2 m^2 to 0.8 m^2 in 0.12 seconds. The magnetic field strength is 4 Teslas and the angle between the direction of the magnetic field strength and the normal of the coils in 60° .

Assign Variables: N = 3 $\Delta A = A_{\text{final}} - A_{\text{initial}} = 0.8\text{m}^2 - 1.2 \text{ m}^2 = -0.4 \text{ m}^2$ B = 4 T $\theta = 60^{\circ}$ $\Delta t = 0.12 \text{ sec}$ $emf = -3 \frac{\left[-0.4(4)(\cos 60^{\circ})\right]}{0.12 \text{ sec}}$ $emf = -3 \frac{\left(-1.6\right)(0.5)}{0.12}$ $emf = -3 \frac{\left(-0.8\right)}{0.12}$ emf = 20 volts