Sine or Cosine? - Which Do You Use?

In Physics some quantities are at angles and require the use of sine or cosine to solve. For some situations the choice is obvious. For others (objects on ramps, for tetherballs, for cars going around a tilted corner) the choice can be very difficult. Geometry will always show you the right answer, but the geometry, too, may not obvious. By using the idea of minimums and maximums at the extremes of the situation, you can easily decide which trigonometric function to utilize.

Trigonometry Basics

With your calculator, verify these identities:
$\operatorname{Sin} 0^{\circ}=0 \quad \operatorname{Cos} 0^{\circ}=1$
$\operatorname{Sin} 90^{\circ}=1 \quad \operatorname{Cos} 90^{\circ}=0$

You must MEMORIZE these:

Therefore:

Cos is a minimum at 90°	Cos is a maximum at 0°
Sin is a minimum at 0°	Sin is a maximum at 90°

Applying the Logic

As the surface tilts from 0° to 90°, the amount of F_{W} that moves the object increases until it is at a maximum at 90°. You know this because at 0° gravity doesn't make the object slid at all.

Which function is a maximum at 90° ? $\operatorname{Sin} 90^{\circ}=1$, therefore:

$$
\mathrm{F}_{\mathrm{X}}=\mathrm{F}_{\mathrm{W}}(\sin \theta)
$$

F_{N} is decreasing.

F_{X} is increasing.

For an object on a ramp:

Though here the only problem solved is an object moving on a ramp, this same process is effective on other situations as well. Figure out where the forces are at maximums and minimums, then you will know whether to use sine or cosine for the x and y directions.

