\qquad
\qquad

Find the valence electrons and oxidation number of:
1. Helium \quad 2. Oxygen Draw the Lewis Dot Diagrams for:

\square

1. $\mathrm{Li}+\mathrm{O}$
2. $\mathrm{Na}+\mathrm{Ar}$
3. $\mathrm{Be}+\mathrm{NO}_{3}{ }^{1-}$
4. $\mathrm{Ca}+\mathrm{O}$

With dot diagrams draw the
With dot diagrams the covalent covalent bond of O_{2} : bond of OF_{2} :

Matching:	A substance made up of two or more atoms that must be separated by chemical means.
A. Mixture B. Compound	Something made up of 2 or more sub-
C. Element	A substance that is pure and made up of $\overline{\text { only }}$ one type of atom.
Heterogenous	ything that has mass and takes up space.
F. Homogeneous	A mixture that is the same throughout.
	A mixture that is different throughout.

www.aisd.net/smurray

1. Valence electrons are the outermost electrons of an atom that are involved in chemical bonding? True/False.
2. Lithium has \qquad valence electrons, will (lose or gain) electrons and become (positive or negative). This is why lithium's oxidation number is \qquad .
3. A metal and non-metal will form a \qquad compound; two non-metals form a \qquad compound.
4. Protons are \qquad ; electrons are \qquad ; neutrons are \qquad -.
5. Protons and neutrons are in the center of the atom, which is called the \qquad .

Give the number of protons for:	
1. Carbon	3. Iron
2. Beryllium	4. Chlorine
Matching: A. Ion B. Element C. Isotope D. Oil	If you change the number of protons you change the \qquad If you change the number of neutrons, you change the \qquad If you change the number of electrons, you change the \qquad Every 5,000 miles you should change a car's
Matching: A. Law of C servation of B. Meter C. Centimet D. Liter E. Gram	Mass is neither destroyed or created in chemical reactions. \qquad Unit of mass; about 1 dollar bill. \qquad 1/100th of meter; width of pinky finger. \qquad Unit of volume; just bigger a quart. Unit of length; 3.3.
Matching: A. Solid B. Liquid C. Gas D. Oil	\qquad Molecules that are tightly packed and retain their shape and size. \qquad Molecules that bounce off of each $\overline{\text { other, can be compressed, and take the }}$ shape of their container. \qquad Molecules that can move (slide) over $\overline{\text { each }}$ other and have a definite size (volume), but not shape and can not be compressed.

Matching:	Temperature at which a liquid turns to a
A. Melting Point	gas. \qquad Temperature at which a solid changes to a liquid.
B. Boiling Point C. Condensation D. Freezing Point	Temperature at which a liquid turns to a solid. \qquad Process of a gas changing to a liquid.
Matching:	\qquad Negative particles that are involved in chemical bonding.
A. Proton B. Neutron	Positive particles that are in the nucleus and determine the element.
C. Electrons D. Bromon	\qquad Neutral particles that determine the isotope.
	$\begin{aligned} & \text { A really cool word that Mr. Murray made } \\ & \text { up (NOT!). } \end{aligned}$

A 30 milliliter object rock is 15 grams. Find its density.

Draw a density column for these liquids: Liquid A, $2.43 \mathrm{~g} /$ mL ; Liquid B, $1.0 \mathrm{~g} / \mathrm{mL}$; Liquid C, $0.87 \mathrm{~g} / \mathrm{mL}$. Label what you know.

Matching:	
A. Solution B. Suspension C. Alloy D. Dissolves	When a substance is mixed into a solution it does this. A homogeneous mixture at the molecular level. A temporary solution: the solute will eventually fall out. A solution of two or more metals.
Matching: A. pH B. Base C. Acid D. Neutral	ien acid and base (distilled water is also this). A chemical that adds H+ ions to a solution.
The scale used to measure acids and	
A chemical that adds OH- ions to a	

1. "If I __ I full" is a way to remember the \qquad rule that says that atoms want to have a full outershell of \qquad electrons.
2. The force that holds the protons together in the nucleus of the atom is called the \qquad .
3. \qquad reactions split big atoms and have toxic waste, while \qquad reactions combine atoms and have no toxic waste.

1. Density	a. A measurement of how easily a solid can be pounded into thin sheets	1.tensile strength	a. Upward force of a liquid or gas pushing upon something immersed in it.
2. Hardness	b. A measurement of the "compactness" of a substance; ratio of mass to volume.	2. viscosity	b. Any material that flows; either a gas or a liquid.
3. Brittleness	c. Measure of a solid's ability to return to its original shape after stretching.	3. buoyancy	c. Measure of a fluid's resistance to flow. (How thick a fluid is.)
4. Elasticity	d. A measure of how easily a solid will shatter.	4. g / mL	d. Measure of how hard it is to break something by pulling.
5. Malleability	e. A measure of how easily a solid can be	5. fluid	e. Unit of density.

Classify the reactions as: addition; decomposition; single displacement; double displacement or combustion.
Balance These Chemical Equations

