\qquad
\qquad The "Laws" and Principles of Chemical Reactions

Principle of Definite Proportions

Every compound exists in an exact formula in definite proportions. To make water you need 2 hydrogen and 1 oxygen atoms, no more - no less. Though this may seem simple, it is foundational to other principles of chemistry.

Chemistry: Magic or Science?

When baking soda and vinegar react the amount of product seems to be smaller than the reactants. Did the chemicals disappear? No, they simple transformed. The chemicals went somewhere. To investigate this transformation a closed system is needed.

Closed system: products are trapped.

Open system: products can escape.

Law of Conservation of Mass

In the chemical reaction of baking soda and vinegar bubbles form; meaning a gas was created. If this gas is not captured, it would seem that the products weigh less than the reactants. The Law of Conservation of Mass, however, (and logic) tell us this is not true. So we must use a closed system to "trap" the products.

Mass is never created or destroyed only transformed.

The Chemical Reaction between Vinegar and Baking Soda

$$
\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{NaHCO}_{3} \rightarrow \mathrm{NaC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}
$$

$$
\begin{gathered}
\text { Vinegar } \\
(\text { Acetic Acid })
\end{gathered}+\begin{gathered}
\text { Baking } \\
\text { Soda }
\end{gathered} \text { produce } \begin{aligned}
& \text { Sodium } \\
& \text { Acetate }
\end{aligned}+
$$

\qquad $+$

Name these compounds

Lab Safety: Wear safety goggles and
an apron during the experiment. \square

Prove it

Setup 1: Open System:
50 mL beaker with 5 g (appr. 1 tsp) baking soda;
50 mL beaker with 20 mL vinegar.
Balance scale.

Complete weight of Setup 1
(including the beakers):
Pour the vinegar into the beaker with the baking soda.

Swirl the beaker to ensure that the reaction has gone to completion (has finished).

Complete weight of Setup 1
(including the beakers): \qquad

Are the Initial and Final weights equal? \qquad
Why? \qquad

Setup 2: Closed System:
Balloon with 5 g (appr. 1 tsp) baking soda
Paperclip to clamp balloon.
125 mL flask with 20 mL vinegar. Balance scale.
Initial weight of Setup 2
(including the beaker and balloon):
Pour the vinegar into the beaker with the baking soda.

Swirl the beaker to ensure that the reaction has gone to completion.

Final weight of Setup 2
(including the containers): \qquad

Are the Initial and Final weights equal? \qquad
Why? \qquad

Name: \qquad
Period: \qquad

Balancing Equations

Find the molecular masses of both sides of this reaction.
$\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}$

Mass of product:

The mass of the reactants and products are not the same, but the Law of Conservation of Mass says that they must be. So we must balance the equation.

How to Balance a Chemical Equation

1. Count up the number of atoms of each element on each side:
2. Put a coefficient in front of one of the molecules that has too few atoms.
3. Recount and see if the reaction is balanced.
4. Put a coefficient in front of another molecule that has too few atoms.
5. Recount and see if the reaction is balanced.
6. Finished.

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{H} \quad 2 \mathrm{O} \quad 2 \mathrm{H} \text { and } 1 \mathrm{O}
$$

$$
\mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow \underline{\mathbf{2}} \mathrm{H}_{2} \mathrm{O}
$$

$$
2 \mathrm{H} \quad 2 \mathrm{O}
$$

$$
\underline{\mathbf{2}} \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

$$
4 \mathrm{H} \quad 2 \mathrm{O}
$$

$$
4 \mathrm{H} \text { and } 2 \mathrm{O}
$$

$$
2 \mathrm{H}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Not balanced: not enough oxygens on the product side.

Not balanced: not enough hydrogens on the reactant side.

Balanced: equal number of atoms on both sides.

Balanced Chemical Equation

Balancing chemical equations can be a long process depending on how difficult the equations are. Go step-by-step and eventually you will balance the equation.

$$
\begin{gathered}
\begin{array}{c}
\text { Balance the following Chemical Equations } \\
\text { (put l's if no other number is needed) } \\
\quad \text { Al }+\ldots \mathrm{Br}_{2} \rightarrow \\
\mathrm{AlBr}_{3} \\
\ldots \mathrm{CH}_{4}+ \\
\mathrm{O}_{2} \rightarrow
\end{array} \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O} \\
\ldots \mathrm{HCl}+\ldots \mathrm{CaCO}_{3} \rightarrow \text { _ } \mathrm{CaCl}_{2}+\ldots \mathrm{CO}_{2}+\ldots \mathrm{H}_{2} \mathrm{O}
\end{gathered}
$$

