\qquad
Energy, Work, and Power
\qquad

Energy, Work, and Power

Energy and work are interconnected-one can make the other.

Energy is stored work. A battery can store energy to make things work whenever you want.

Energy can cause forces,
which can cause motion, which can do work.

Energy is Work.

Work uses energy.

It takes energy to move things.
Energy can make things work.
Work can create energy.
A generator uses work to make energy, which can be stored to do more work.

Work is defined as a force applied (moved) through a distance.

If you push harder (more force) you do more work.
If you push longer (more distance) you do more work.

Ex: You push a 1000 newton car 5 meters. How much work did you do?	
$\mathrm{F}=1000 \mathrm{~N}$ $\mathrm{~d}=50 \mathrm{~m}$ $\mathrm{~W}=?$	$\mathrm{~W}=\mathrm{Fd}$
	$\mathrm{W}=(1000 \mathrm{~N})(50 \mathrm{~m})$ $=5,000 \mathrm{~J}$ (joules) (Doing 5,000 J of work takes 5,000 J of energy)

To do work, a force has to be in the direction of the motion.

Ex: How much work does a kid do while sitting? The kid weighs 45 N .

No work - the kid is not moving. $(d=0, W=0)$

How fast you do work is called power. If you work faster, you use more power.

Power equals work divided by time. Putting in the work equation: $\mathrm{P}=\frac{\mathrm{Fd}}{\mathrm{t}}$

A machine that works faster (in less time) is more powerful.

A more powerful light bulb gives off the same amount of light (work), it just does it faster.

Ex: You do 120 joules of work in			
2 seconds. How much power did you use?		\left\lvert\,	$\mathrm{P}=\mathrm{W} / \mathrm{t}$
:---			
$\mathrm{W}=120 \mathrm{~J}$			
$\mathrm{t}=2 \mathrm{sec}$			
$\mathrm{P}=?$	\quad	$=120 \mathrm{~J} / 2 \mathrm{sec}$	
:---:			
$=60 \mathrm{watts}$			
	\right.		

Ex: Two guys lift two 40 N rocks up a 5 m staircase. Bob does it in 10 seconds. Joe does it in 20 seconds. Compare their work and power.	
$\begin{aligned} & \text { Bob: } \mathrm{F}=40 \mathrm{~N} ; \mathrm{d}=5 \mathrm{~m} ; \mathrm{t}=10 \mathrm{~s} \\ & \mathrm{~W}=\mathrm{Fd}=40 \mathrm{~N}(5 \mathrm{~m})=200 \mathrm{D} \\ & \mathrm{P}=\mathrm{W} / \mathrm{t}=200 \mathrm{~J} / 10 \mathrm{~s}=20 \mathrm{~W} \end{aligned}$	$\left\{\begin{array}{l} \text { Joe: } \mathrm{F}=40 \mathrm{~N} ; \mathrm{d}=5 \mathrm{~m} ; \mathrm{t}=2 \\ \mathrm{~W}=\mathrm{Fd}=40 \mathrm{~N}(5 \mathrm{~m})=200 \mathrm{D} \\ \mathrm{P}=\mathrm{W} / \mathrm{t}=200 \mathrm{~J} / 20 \mathrm{~s}=10 \mathrm{~W} \end{array}\right.$
They do the same amount of work (200 J), but Bob uses more power (20 w)	

Name: \qquad
Period: \qquad

> More or Less Power?

An engine can lift an object faster.
Someone takes more time to push a car.
You take the same amount of time to do more work.
Same distance; same time; more force.
You move a 25 N object 5 meters. How much work did you do?

You carry a 20 N bag of dog food up a 6 m flight of stairs. How much work was done?

You push down on a 3 N box for 10 minutes. How much work was done?

You use 35 J of energy to move a 7 N object. How far did you move it?

You do 45 J of work in 3 seconds. How much power do you use?

A car uses 2,500 Joules in 25 seconds. Find power.

A 60 watt light bulb runs for 5 seconds. How much energy does it use?

You push a 10 N object 10 meters. How much work was done on the object?

On the same object as in the previous question, you have to push with 15 N to move it 10 meters. How much work do you do?

What was the difference in the work to move the object and the work you do?

Why was there a difference?

