\qquad
\qquad

$\text { 1. } \mathrm{F} \text { or } \mathrm{F}_{\mathrm{w}}=$				
$\text { 2. } \mathrm{m}=$				m
3. $\mathrm{MA}=$				gm / s
4. v =				m/s
$5 . \mathrm{D}=$				kg
6. $\mathrm{p}=$				N
1. Inertia	A. Ability of an object to resist change of motion; dependent on mass.			
2. Mass	B. Motion is always caused by this.			
3. Gravity	C. The amount of matter in an object			
4. Net force	D. Force that attracts any two masses toward each other.			
5. Force	E. Total of all of the forces on an object.			
Number these from most (1) to least (5) inertia.				
A cat	A horse	A person	A mouse	A whale
Number th	these from	ost (1) to l	ast (5) mom	ntum.
Fast car	Fast truck	Fast plane	Fast hammer	A mountain

Write in the following formulas		
Force (Newton's 2nd Law)	Weight	Momentum
Conservation of Momentum (left and right)	Mechanical Advantage (using force)	Mechanical Advantage (using distances)

35 N is pulling to the left and friction opposes with 15 N . Find the net force (remember to show direction).

If 40 N is pushing to the right and friction is 10 N , find the acceleration and direction of a 6 kg object.

A 35 kg bike accelerates at $5 \mathrm{~m} / \mathrm{s}^{2}$. With what force was the person pedaling?

If a person is pushing a cart with a force of 9 Newtons and it accelerates at $0.5 \mathrm{~m} / \mathrm{s}^{2}$, what is the mass of the cart?

Using $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$, find the weight of a 3 kg mass.

What is the mass of a 45 N object?
\qquad
\qquad

1.	Weight	A.	When all forces on an object are bal- anced.
2.	Equilibrium	B.	The force of gravity on an object.
3.	Mass	C.	The acceleration of gravity.
4.	Heat	D.	The a product of friction.
5.	g	E.	The measure of the matter in an object.

Name the six simple machines:

If gravity and air friction on a parachutist are equal, are they at equilibrium? Are they speeding up or not?

A 5 kg ball is thrown $11 \mathrm{~m} / \mathrm{s}$. Find momentum.

A car going $30 \mathrm{~m} / \mathrm{s}$ has $150 \mathrm{kgm} / \mathrm{s}$ of momentum. Find the car's mass.

A 30 kg girl throws a 2 kg ball to the left. The girl ends up going $3 \mathrm{~m} / \mathrm{s}$ to the right. Find the ball's velocity.

Using a pulley you use 4 N to pull up a 24 N crate. Find the MA of the pulley AND how many support ropes does it have?

A lever with a MA of 6 lifts a crate up 3 cm . How far do you have to pull down the lever?

Using a lever you pull down 6 m to lift a rock up 2 m . If you pull down with 8 N , how much does the rock weigh?

