\qquad
\qquad

Levers

Using Forces to find MA

$$
\begin{array}{lr}
\mathbf{F}_{\text {out }} \text { - what you are } & \mathbf{F}_{\text {in }} \text { - force you put } \\
\text { lifting with the lever. } & \underline{\text { into the lever. }}
\end{array}
$$

 point of a lever.

$$
\mathrm{MA}=\frac{\mathrm{F}_{\text {out }}}{\mathrm{F}_{\text {in }}}=\frac{90 \mathrm{~N}}{30 \mathrm{~N}}=3
$$

This lever multiplies force by 3 !

Ex. A 250 N crate is picked up by pushing on a lever with 50 N of force. Find the MA of the lever.

$\mathrm{F}_{\text {out }}=250 \mathrm{~N}$	$\mathrm{MA}=\frac{\mathrm{F}_{\text {out }}}{\mathrm{F}_{\text {in }}}=\frac{250 \mathrm{~N}}{50 \mathrm{~N}}$
$\mathrm{~F}_{\text {in }}=50 \mathrm{~N}$	
$\mathrm{MA}=?$	$\mathrm{MA}=5$

Ex. A lever has an MA of 6. If you weigh 50 N, how much can you lift with the lever?	
$\mathrm{MA}=6$ $\mathrm{F}_{\text {in }}=50 \mathrm{~N}$ $\mathrm{~F}_{\text {out }}=?$ If MA $=\frac{\mathrm{F}_{\text {out }}}{\mathrm{F}_{\text {in }}}$ then $\mathrm{F}_{\text {out }}=(\mathrm{MA})\left(\mathrm{F}_{\text {in }}\right)=6(50 \mathrm{~N})$ $\mathrm{F}_{\text {out }}=300 \mathrm{~N}$	

Using Distances to find MA - 2 ways

Using distances from the fulcrum

Using how far the ends move

Ex. A lever has an input arm of 6 m and an output arm of 2 meters. Find the MA of the lever.

$\operatorname{Arm}_{\text {in }}=D_{E}=6 \mathrm{~m}$ $\operatorname{Arm}_{\text {out }}=D_{R}=2 \mathrm{~m}$ $M A=?$	$M A=\frac{D_{E}}{D_{R}}=\frac{6 \mathrm{~m}}{2 \mathrm{~m}}$
	$M A=3$

Ex. To lift a box, you pull down 40 cm . The box moves up only 5 cm . Find the MA of the lever.

$\mathrm{D}_{\mathrm{E}}=40 \mathrm{~cm}$	$\mathrm{MA}=\frac{\mathrm{D}_{\mathrm{E}}}{\mathrm{D}_{\mathrm{R}}}=5 \mathrm{~cm}$
$\mathrm{MA}=?$	

$$
\mathrm{MA}=8
$$

First Class Levers have the fulcrum in the middle.
Examples are seesaws, scissors, and pliers.

Second Class Levers have the output force in the middle. Examples are wheelbarrows and nutcrackers.

Third Class Levers have the input force in the middle. Most body parts are good examples (arms and legs), as are most sports equipment (bats, rackets, and clubs).

\qquad

Period:

\qquad

Draw an arrow to the fulcrum of each lever.

Identify these levers as first, second, or third class:	
A.	
B.	
C.	
D.	
E.	
F.	

D. Wheelbarrow

C. Nutcracker-output is cracking the nuts.

F. Stapler-you push in the middle.

Input or Output Force?
\quad You use a lever to lift a 45 N rock.
You stand on the end of a lever.
A lever lifts a 38 N crate.
A lever applies 78 N of force to a car.
To lift an object you have to apply 8 N of force.
MA. \quad lever has a 36 cm input arm and a 6 cm output arm. Find

A lever takes 150 N to lift a 75 N object. Find MA.

You have to pull down 15 cm to lift a box 5 cm . Find MA.

The MA of a lever is 4 . If you have to lift the object up 20 cm , how far will you have to pull down?

An 60 kg astronaut throws a 3 kg wrench to the left. The wrench ends up going $10 \mathrm{~m} / \mathrm{s}$ to the right. Find the velocity of the astronaut.

