\qquad
\qquad

A Machine is anything that has moving parts and can perform a task (can do work).

Machines make work easier.
A Simple Machine is a device that accomplishes a task with one simple motion and without an engine.

Most devices you know are combinations of the six simple machines.

The Six Simple Machines with examples	
$\underline{\boldsymbol{S}}$ crew	Screw; corkscrew
Wheel and $\underline{\boldsymbol{A}}$ xle	Crank; tires; screwdrivers
\underline{W} edge	Nail; arrow; knife
ever	Scissors; nutcracker; arm
Ramp or $\underline{\text { Incline }}$ Plane	Wheelchair ramp; stairs
$\underline{\boldsymbol{P}}$ ulley	Block and tackle

Mechanical Advantage

 tells us how much advantage is given OR how much a machine multiplies your force (or time).If $\mathrm{MA}=1$, then Input $=$ Output
If MA >1, then Output $>$ Input (multiplies force)

If MA <1, then Output $<$ Input (reduces force)

Just to know: some people consider "gears" to be a seventh simple machine. Gears are actually levers on wheels.

Calculating Mechanical Advantage - 2 Ways

Ex. Using a block and tackle a boy pulls on a rope with 10 newtons of force and raises a 50 newton weight.
Find the mechanical advantage of the block and tackle.

$\mathrm{F}_{\text {input }}=10 \mathrm{~N}$	MA $=50 \mathrm{~N} / 10 \mathrm{~N}=5$
$\mathrm{~F}_{\text {output }}=50 \mathrm{~N}$	Notice that newtons cancel - there are no units for mechanical advantage
$\mathrm{MA}=\frac{\mathrm{F}_{\text {output }}}{\mathrm{F}_{\text {input }}}$	

Output Force vs.
Input Force

Output Force - what you are
lifting with the simple machine.

Input Force - how much you put into the machine.

Ex. Using a block and tackle (pulleys) a boy pulls the rope 10 meters to move the weight up 2 meters. Find mechanical advantage.

$D_{\text {effort }}=10 \mathrm{~m}$	MA $=10 \mathrm{~m} / 2 \mathrm{~m}=5$
$D_{\text {resistance }}=2 \mathrm{~m}$	Just as before -
$\mathrm{MA}=\frac{D_{\text {effort }}}{D_{\text {resistance }}}$	no units for mechanical advantage.

Distance of Effort vs. Distance of Resistance

Distance of effort - how far you move

D_{E} and D_{R} of an incline plane.

Name: \qquad
Period: \qquad

Identify these simple machines: A. \qquad B. \qquad C.		1. Mechanical Advantage 2. None 3. D_{E} 4. D_{R}	A. How much a machine amplifies or reduces your force. B.The units for mechanical advantage. C.How far the object would move without the simple machine. D.How far the object moves with the simple machine.
D. \qquad E. \qquad F. \qquad	E. F. 1	1. Machine 2. $\mathrm{F}_{\text {in }}$ 3. $\mathrm{F}_{\text {out }}$ 4. Pulley	A.The force you put into a machine. B.A device that has moving parts and can do work. C.A block and tackle is another name for this. D.The force you get out of a machine.
Input Force ($\mathrm{F}_{\text {in }}$) or Output Force ($\mathrm{F}_{\text {out }}$) ?		Distance of Effort (D_{E}) or Distance of Resistance $\left(\mathrm{D}_{\mathrm{R}}\right)$?	
You lift a 200 N object.		You use an incline plane to lift a car up 4 meters.	

\qquad You push 240 N on a lever.
\qquad You turn a screw with 30 N of force.
___ A pulley applies 48 N of force up.

A kid pulls on a rope with 20 newtons of force. The block and tackle system pulls up a 160 newton box. What is the mechanical advantage of the pulley system?

If it takes 100 N to push a 300 N object up an incline plane, what was the mechanical advantage of the ramp?

A 10 meter ramp helps you to move a 500 kg object up 1 meter. What was the mechanical advantage of the ramp?

A pulley system has an MA of 4 . How much force would be necessary to pull up a 200 newton box?

A 10 N force pulls to the right and friction opposes 2 N . If the object is 20 kg , find the acceleration.

You have a 200 kg bag being lifted with a block and tackle. If you pull with 100 newtons what is the MA of the system?

