Period:

Simple Machines and Mechanical Advantage

A **Machine** is anything that has moving parts and can perform a task (can do work).

Machines make work easier.

A **Simple Machine** is a device that accomplishes a task with one simple motion and without an engine.

Most devices you know are combinations of the six simple machines.

The Six Simple Machines with examples			
<u>S</u> crew	Screw; corkscrew		
Wheel and $\underline{\boldsymbol{A}}$ xle	Crank; tires; screwdrivers		
$\underline{\pmb{W}}$ edge	Nail; arrow; knife		
<u>L</u> ever	Scissors; nutcracker; arm		
Ramp or <u>I</u> ncline Plane	Wheelchair ramp; stairs		
<u>P</u> ulley	Block and tackle		

Just to know: some people consider "gears" to be a seventh simple machine. Gears are actually levers on wheels.

Mechanical Advantage

tells us how much advantage is given OR how much a machine multiplies your force (or time).

If MA = 1, then Input = Output

If MA > 1, then Output > Input (multiplies force)

If MA < 1, then Output < Input (reduces force)

Calculating Mechanical Advantage — 2 Ways

Mechanical Advantage equals the output force divided by the input force.

Ex. Using a block and tackle a boy pulls on a rope with 10 newtons of force and raises a 50 newton weight. Find the mechanical advantage of the block and tackle.

$$F_{input} = 10 \text{ N}$$

$$F_{output} = 50 \text{ N}$$

$$MA = \frac{F_{\text{output}}}{F_{\text{input}}}$$

$$MA = 50N/10N = 5$$

Notice that newtons cancel
– there are no units for
mechanical advantage

Output Force vs. Input Force

Output Force — what you are lifting with the simple machine.

 F_{out} and F_{in} of a lever.

Mechanical Advantage equals the distance of effort divided by the distance of resistance.

Ex. Using a block and tackle (pulleys) a boy pulls the rope 10 meters to move the weight up 2 meters.

Find mechanical advantage.

$$D_{effort} = 10 \text{ m}$$

$$D_{resistance} = 2 \text{ m}$$

$$MA = \frac{D_{effort}}{D_{resistance}}$$

MA = 10m/2m = 5

Just as before – no units for mechanical advantage.

Distance of Effort vs. Distance of Resistance

 D_E and D_R of an incline plane.

Name:	
Doriode	

Identify these simple machines:	A A. J	1. Mechanical Advantage	A.How much a machine amplifies or reduces your force.
A.			B.The units for mechanical advantage.
71.	В.	2. None	C.How far the object would move without the
B	D.	$3.D_{\rm E}$	simple machine.
C	c.		D.How far the object moves with the simple machine.
D		1. Machine	A.The force you put into a machine.
E.	E. F.	2. F _{in}	B.A device that has moving parts and can do work.
E	7.5	3. F _{out}	C.A block and tackle is another name for this.
F		4. Pulley	D.The force you get out of a machine.
Input Force (F _{in}) or Output Force (F _{out})?		Distance of Effort (D_E) or Distance of Resistance (D_R)?	
You lift a 200 N object.		You use an incline plane to lift a car up 4 meters.	
A wedge applies 400 N of force to a piece of wood.		You use a 10 meter ramp to raise up a car.	
You push 240 N on a lever.		You lift a 200 kg object up 2 meters.	
You turn a screw with 30 N of force.		The distance you push down on a lever.	
A pulley applies 48 N of force up.		The distance the object moves with a lever.	
A kid pulls on a rope with 20 newtons of force. The block and tackle system pulls up a 160 newton box. What is the mechanical advantage of the pulley system?		A pulley system has an MA of 4. How much force would be necessary to pull up a 200 newton box?	
		A 10 N 5	lle as also siska and Esisting suppose 2 N. If also
If it takes 100 N to push a 300 N object up an incline plane, what was the mechanical advantage of the ramp?		A 10 N force pulls to the right and friction opposes 2 N. If the object is 20 kg, find the acceleration.	
A 10 meter ramp helps you to move a 500 kg object up 1 meter. What was the mechanical advantage of the ramp?		You have a 200 kg bag being lifted with a block and tackle. If you pull with 100 newtons what is the MA of the system?	
i meter. what was the mechanic	ai auvainage of the famp?		