Name: \qquad
\qquad

Momentum and Conservation of Momentum

A house that is not moving has no momentum.

Something has to be moving to have momentum.

Something with more momentum would hurt worse if it hit you.

Slow bowling ball: little momentum; heavy, but slow.

Ex. How much momentum does a 30 kg object going $4 \mathrm{~m} / \mathrm{s}$ have?		Ex. An object going $3 \mathrm{~m} / \mathrm{s}$ has $36 \mathrm{kgm} / \mathrm{s}$ of momentum. Find mass.		Ex. How fast is a 15 kg object going if it has $45 \mathrm{kgm} / \mathrm{s}$.	
Variables: $\begin{aligned} & 30 \mathrm{~kg}=\mathrm{m} \\ & 4 \mathrm{~m} / \mathrm{s}=\mathrm{v} \\ & \mathrm{p}=? \end{aligned}$ Equation: $\mathrm{p}=\mathrm{mv}$	Solve: $\begin{aligned} \mathrm{p} & =\mathrm{mv} \\ & =(30 \mathrm{~kg})(4 \mathrm{~m} / \mathrm{s}) \\ & =120 \mathrm{kgm} / \mathrm{s} \end{aligned}$ Just put together the units for m and v.	Variables: $\begin{aligned} & 3 \mathrm{~m} / \mathrm{s}=\mathrm{v} \\ & 36 \mathrm{kgm} / \mathrm{s}=\mathrm{p} \\ & \mathrm{~m}=? \end{aligned}$ Equation: $\mathrm{p}=\mathrm{mv}$	Solve: If $p=m v$ $\begin{aligned} & \text { Then } \mathrm{m}=\mathrm{p} / \mathrm{v} \\ & =(36 \mathrm{kgm} / \mathrm{s}) /(3 \mathrm{~m} / \mathrm{s}) \\ & =12 \mathrm{~kg} \end{aligned}$	Variables: $45 \mathrm{kgm} / \mathrm{s}=\mathrm{p}$ $15 \mathrm{~kg}=\mathrm{m}$ $\mathrm{v}=?$ Equation: $\mathrm{p}=\mathrm{mv}$	Solve: $\text { If } \mathrm{p}=\mathrm{mv}$ $\begin{aligned} & \text { Then } \mathrm{v}=\mathrm{p} / \mathrm{m} \\ & =(45 \mathrm{kgm} / \mathrm{s}) /(15 \mathrm{~kg}) \\ & =3 \mathrm{~m} / \mathrm{s} \end{aligned}$

Newton's Third Law says that when you throw a ball, the ball pushes on you, too. Using momentum, you can describe what happens between pairs of forces.

Law of Conservation of Momentum

"Momentum is conserved in a closed system" OR "The total amount of momentum does not change."

Ex. A 40 kg boy on a skateboard throws a 2 kg , $20 \mathrm{~m} / \mathrm{s}$ to the left. Find how fast the boy is going afterward.

Use The Law of Conservation of Momentum

Solution:

$P_{\text {change }}=0=P_{R}-P_{L}$
$P_{L}=P_{R}$
$P_{\text {ball }}=P_{\text {boy }}$
$m_{L} V_{L}=m_{R} V_{R}$

$$
\frac{\mathrm{m}_{\mathrm{L}} \mathrm{v}_{\mathrm{L}}}{\mathrm{~m}_{\mathrm{R}}}=\mathrm{v}_{\mathrm{R}}
$$

$$
\frac{(2 \mathrm{k} g)(20 \mathrm{~m} / \mathrm{s})}{40 \mathrm{~kg}}=
$$

The boy ends up going $1 \mathrm{~m} / \mathrm{s}$ to the right.

Law of Conservation

 of Momentum:$$
\begin{gathered}
\mathbf{p}_{\text {change }}=\mathbf{0} \\
\mathbf{p}_{\text {left }=}=\mathbf{p}_{\text {right }} \\
\mathbf{m}_{\mathbf{L}} \mathbf{V}_{\mathbf{L}}=\mathbf{m}_{\mathbf{R}} \mathbf{V}_{\mathbf{R}}
\end{gathered}
$$

Conservation of momentum is also how rockets fly. A rocket expels gases at very fast velocity and the rocket goes the opposite direction.

$$
\mathrm{p}_{\text {rocket }}=\mathrm{p}_{\text {fuel }}
$$

