Momentum and Conservation of Momentum

Ex. How much momentum does a 30 kg object going 4 m/s have?		Ex. An object going 3 m/s has 36 kgm/s of momentum. Find mass.		Ex. How fast is a 15 kg object going if it has 45 kgm/s.	
Variables: 30 kg = m 4 m/s = v p = ? Equation: p = mv	Solve: p = mv = (30kg)(4m/s) = 120 kgm/s Just put together the units for m and v.	Variables: 3 m/s = v 36 kgm/s = p m = ? Equation: p = mv	Solve: If $p = mv$ Then $m = p/v$ = (36 kgm/s)/(3m/s) = 12 kg	Variables: 45 kgm/s = p 15 kg = m v = ? Equation: p = mv	Solve: If $p = mv$ Then $v = p/m$ = $(45kgm/s)/(15kg)$ = 3 m/s

Newton's Third Law says that when you throw a ball, the ball pushes on you, too. Using momentum, you can describe what happens between pairs of forces.

Name:

Period:

Law of Conservation of Momentum

"Momentum is conserved in a closed system" OR "The total amount of momentum does not change."

Ex. A 40 kg boy on a skateboard throws a 2 kg, 20 m/s to the left. Find how fast the boy is going afterward.

Use The Law of Conservation of Momentum

Solution:

$$P_{change} = 0 = P_{R} - P_{L}$$

$$P_{L} = P_{R}$$

$$P_{ball} = P_{boy}$$

$$m_{L}v_{L} = m_{R}v_{R}$$

$$\frac{m_{L}v_{L}}{m_{R}} = v_{R}$$

$$\frac{(2kg)(20m/s)}{40kg} =$$

$$\frac{40 \text{ m/s}}{40} = (1 \text{ m/s})$$

The boy ends up going 1 m/s to the right. Law of Conservation of Momentum: $p_{change} = 0$ $p_{left} = p_{right}$ $m_L v_L = m_R v_R$

Conservation of momentum is also how rockets fly. A rocket expels gases at very fast velocity and the rocket goes the opposite direction.

 $p_{\text{rocket}} = p_{\text{fuel}}$

1. Momentum	A. Momentum does not change in a closed system OR $m_Lv_L = m_Rv_R$	Which of Newton's Three Laws Applies?		
 2. kgm/sec 3. Law of Conservation of momentum 	B. Units for momentumC. Measure of the product of an	 A rocket moves forward because gases are pushed out the back. More force creates more acceleration. 		
4. Weight	object's mass and velocity. D. Changes when gravity changes.			
5. Inertia	E. Doesn't change with gravity.	 A magician pulls out the tablecloth from under the plates on a table and the plates stay put. You pull back on the paddle and the canoe goes forward. A larger car takes a bigger engine to move it. 		
 Newton's First Law Newton's 	For every action there is an equal an opposite reaction. Objects at rest stay at rest and objects in			
Second Law	motion stay at motion unless acted on by a net force.			
Third Law	_Force equals mass times acceleration.	Once the engines stop, a rocket coasts through space.		
Find the momentum An object is going Find momentum.	m of a 25 kg object going 4 m/s.	A 50 kg boy on ice skates throws a 5 kg ball to the left. If the ball ends up going 20 m/s. How fast is the boy going?		
A pingpong ball ha thrown 8 m/s. Fir	as 2 kgm/s of momentum when nd the mass of the ball.	Two astronauts push off of each other in space. The 80 kg astronaut ends up going 10 m/s. The other one ends up going 8 m/s. What is the mass of the other astronaut?		
		Find the weight of a 25 kg table. (Use $g = 10 \text{ m/s}^2$)		
A 25 kg cart has 12 is the cart going?	25 kgm/s of momentum. How fast	$\overline{A 20 N}$ force pulls to the right and friction pulls 5 N. If the mass is 5 kg, find acceleration.		