Name: \qquad
Period: \qquad

Harmonic (H), Linear (L), or Wave (W) motion?		
Person running: L	A swing: H	Music: W
The moon: H	A car moving: L	Bird flying: L
Clock pendulum: H	Jumping Jacks: L	Bouncing spring: H
Ocean waves: W	X-rays: W	Radio Signals: W ___

1.	Frequency -
	A
2.	Period - C
3.	Cycle-D
4.	Hertz-E
5.	Amplitude-B

A. The number of cycles per second.
B. The size or strength of a cycle.
C. Time it takes to complete one cycle.
D. A part of motion that repeats over
and over with a set series of events.
E. A unit of one cycle per second.

One cycle would be from C to \underline{C}.
One half cycle would be from A to \underline{C}.
The amplitude would be from C to \underline{B}.
To shorten the period you would have to shorten or lengthen the string? shorten

If the mass at the end was greater period would be? same If the amplitude was greater the period would be? same

If the frequency of a pendulum is 2 Hz , what is the period? $T=1 / f=1 / 2=0.5 \mathrm{sec}$

If the period of a wave is 4 seconds, what is its frequency?
$f=1 / T=1 / 4=0.25 \mathrm{~Hz}$

Displacement vs. Position

Mark 1 cycle of the wave. / Is it a standing or moving vave? Mark the crests and troughs.
Starting at 0.75 m , where does the 2 nd cycle end:
Number of complete cycles: 4 Wavelength: 1 m
Amplitude: $2 \mathrm{~m} \quad$ If $\mathrm{f}=4 \mathrm{~Hz}$, find speed: $=f \lambda=4 x 1=4 \mathrm{~m} / \mathrm{s}$
If a wave is 30 m long and 4 Hz , find its speed.
$v=f \lambda=4 \times 30=120 \mathrm{~m} / \mathrm{s}$

If a $150 \mathrm{~m} / \mathrm{s}$ wave has a frequency of 15 Hz , find its wavelength.
$150 / 15=\lambda$
$10 m \Rightarrow \lambda$

Mark 1 cycle of the harmonic motion.
Starting at 1.5 secs, when does the 1 st cycle end: 4.5 sec

Frequency: $\underline{1 / 3=0.33 \mathrm{~Hz}}$ Amplitude: $\underline{1 / 2(4-(-2))=3 / \mathrm{cm}}$

Find its period: $\underline{T=1 / f=1 / 200=0.005 \mathrm{sec}}$
What harmonic is this? $\underline{2 n d}$
Mark the nodes and anti-nodes.
How many wavelengths is it? One
Can we hear this frequency? yes
Find the fundamental frequency:
$\underline{200 / 2}=100 \mathrm{~Hz}$ \qquad
3rd harmonic frequency:

200 Hz

Absorption, Reflection, Refraction, or Diffraction?
Light waves hit a mirror and bounces off by: Reflection
You can hear around a corner by: Diffraction
If a wave hits a soft boundary, it dies by: Absorptions
A wave bends inside a clear boundary by: Refraction
A pillow reduces sound by: Absorption
Light between your fingers causes darkness by: Diffraction A prism makes a rainbow by: Refraction

Name: \qquad
Period: \qquad

1. Transverse -C	A.	Faster than $340 \mathrm{~m} / \mathrm{s}$.
2. Longitudinal-	B.How we hear changes of frequency in D	sound.
3. Pitch -B	C.Light is this kind of wave, moving 90° to the linear motion.	
4. Loudness - E	D.Sound is this kind of wave, with the vibra- tions in the same direction as the motion. 5. Supersonic - A	E.How we hear amplitude in sound.

To be twice as loud a sound has to change by: $+20 d B$
To be half as loud a 50 dB sound would have to become:
$50-20 d B=30 d B$
Humans can hear frequencies between: 20 Hz and $20,000 \mathrm{~Hz}$
A sound wave has a frequency of 4 Hz . Find its wavelength.
$v=340 \mathrm{~m} / \mathrm{s}($ sound $) \quad 340=4(\lambda)$
$v=f \lambda \quad \lambda=340 / 4=85 \mathrm{~m}$
You hear the crack of a bullwhip 3 seconds after you see it move.
How far away is it? $S=340$ (you hear it); $T=3 \mathrm{sec}$
$\begin{array}{ll}S=D / T & D=340 \times 3= \\ D=S T & D=1020\end{array}$
$D=S T \quad D=1020 \mathrm{~m}$
You yell into a cave and 4 seconds later you hear the echo return.
How deep is the cave? $S=340$ (you yell); $T=2 \mathrm{sec}$ (echo)
$D=S T=340 \times 2=680 \mathrm{~m}$
D

Where does light come from?
Electrons falling from high to low energy levels.

Two polarizers cancel out light if they are:
Turned 90° to each other (one vertical/ one horizontal)

Why do we see lightening and hear the thunder a few seconds later?
Light is much faster than sound
What is the speed of light? $3 \times 10^{8} \mathrm{~m} / \mathrm{sec}$ (REALLY fast)
What has more energy: Visible light or X-rays?
What has a shorter wavelength: Microwaves or Ultraviolet rays?
What has a higher frequency: Radio waves or Infrared?

All light, visible or invisible is part of the: EM Spectrum
Visible light is a big/small part of this spectrum? Very small

The angle of incidence is: angle c The angle of reflection is: angle b Line b we call the: normal \qquad The incident ray is: line c _ The reflected ray is: line b \qquad

1. Radio waves-D
2. Ultraviolet - E
3. X-rays-A
4. Gamma rays-C
5. Infrared-B
6. Microwaves-F
A. EM waves that can pass through skin and have short wavelengths.
B. Electromagnetic waves we feel as heat.
C. Dangerous EM waves that have very high energy and come from nuclear reactions.
D. EM waves that have very low energy and long wavelengths.
E. EM waves with more energy than visible light and can cause sunburns.
F. Long wavelengths; used in cell phones.

Additive or Subtractive Colors and Why
Using paints: Additive _ Why? Pigments and white background
Computer screen: subtr_ Why? Uses lights; backgnd is black
White light can be separated by a prism into these colors:
ROY G BIV:

Red	Green	Blue
Orange		Indigo
Yellow		Violet

What kind of light bulb is less efficient and why?
Incandescent-makes a lot of heat, too, not just light

Convergent/Divergent Magnifying/Reducing

Convergent/Divergent Magnifying/ Reducing

Show where the 3 light rays will go.
Concave or convex lens?
What do we call the dot?
Magnifying or reducing?
Convergent or divergent?

If the angle of incidence is 50°, what is the angle of reflection? 50° The angle of incidence $=$ angle of reflection
An image looks to be 12 m away from a mirror. How far is the object? 6 m (images look twice as far away as the object)

An object is 3 ft away from a mirror; the image looks: 6 ft

