Name: \qquad
\qquad

Period vs. Frequency

The period is how long it takes to complete one cycle. The frequency is how many cycles occur per second. $\boldsymbol{H e r t z}(\boldsymbol{H z})$ means cycles per second.

	Ex: A wave has a frequency If you know of 10 Hz. Find its period.			
frequency you can				
find period.				$\mathrm{f}=10 \mathrm{~Hz}$
:---	:---			
$\mathrm{~T}=?$	\quad	$\mathrm{T}=1 / \mathrm{f}$		
:---:				
$\mathrm{T}=1 / 10 \mathrm{~Hz}$				
$\mathbf{T}=\mathbf{0 . 1} \mathbf{~ s e c}$				

If you know period you can find frequency.	Ex: A pendulum has a period of O.5 seconds. Find its frequency.	
	$\mathrm{T}=0.5 \mathrm{sec}$ $\mathrm{f}=?$	$\mathrm{f}=1 / \mathrm{T}$
$\mathrm{f}=1 / 0.5 \mathrm{sec}$		
$\mathbf{f}=\mathbf{2} \mathbf{~ H z}$		

Harmonics

$\mathrm{f}_{\mathrm{f}}-$ is the frequency of the fundamental (in Hz).
$\mathrm{f}_{\mathrm{Hx}}-$ is the frequency of the harmonic (in $\boldsymbol{H z}$).
X - is the number of the harmonic (if $\mathrm{H}_{3}, \mathrm{X}=3$)

If you are given the fundamental you can find the frequencies of any of the harmonics.

If you are given the harmonic frequency and what harmonic it is you can find the frequency of the fundamental.

Ex. If the eighth harmonic has a frequency of 80 Hz, find the fundamental frequency.	
$\mathrm{f}_{\mathrm{H} 8}=80 \mathrm{~Hz}$ $\mathrm{X}=8$ $\mathrm{f}_{\mathrm{f}}=?$	$\mathrm{f}_{\mathrm{Hx}}=\mathrm{f}_{\mathrm{f}}(\mathrm{X})$

Speed of Sound (v_{s})

The Speed of Sound in air is approximately $340 \mathrm{~m} / \mathrm{sec}$. Use this number anytime a problem refers to a sound wave, music, a noise, or someone hearing something.

The Speed of a Sound Wave
$340 \mathrm{~m} / \mathrm{sec}=\mathbf{f} \lambda$

Speed

$$
S=\frac{\mathbf{D}}{\mathbf{T}}
$$

Because you know the speed of sound, if you know λ you can f and vice versa.

If you know how long it takes a sound to reach you, you can find how far away the sound source is.

You can find either wavelength or frequency if you know the wave's speed.

Ex. Find the speed of a 60 Hz wave if one cycle is 4 meters long.	
$\mathrm{f}=60 \mathrm{~Hz}$	$\mathrm{v}=\mathrm{f} \lambda$
$\lambda=4 \mathrm{~m}$	$\mathrm{v}=(60 \mathrm{~Hz}) \mathrm{x}(4 \mathrm{~m})$
$\mathrm{v}=?$	$\mathrm{v}=240 \mathrm{~m} / \mathrm{s}$

You can find speed from frequency and wavelength.

Ex. What wavelength wave has a $200 \mathrm{~m} / \mathrm{s}$ velocity and 50 Hz frequency?	
$\mathrm{f}=50 \mathrm{~Hz}$	$\mathrm{v}=\mathrm{f} \lambda \mathrm{SO} \lambda=\mathrm{v} / \mathrm{f}$
$\mathrm{v}=200 \mathrm{~m} / \mathrm{s}$	$\lambda=(200 \mathrm{~m} / \mathrm{s}) \div(50 \mathrm{~Hz})$
$\lambda=?$	$\lambda=4 \mathrm{~m}$

Ex. Find the wavelength of a 100 Hz sound.	
$\mathrm{v}_{\mathrm{s}}=340 \mathrm{~m} / \mathrm{s}$ $\mathrm{f}=100 \mathrm{~Hz}$ $\lambda=?$	$\mathrm{v}=\mathrm{f} \lambda$ so $\lambda=\mathrm{v} / \mathrm{f}$ $\lambda=(340 \mathrm{~m} / \mathrm{s}) \div(100 \mathrm{~Hz})$ $\lambda=3.4 \mathrm{~m}$

Ex. If you hear a sound 2 seconds after you see the motion, how far away is it?	
$\mathrm{v}_{\mathrm{s}}=340 \mathrm{~m} / \mathrm{s}$	$\mathrm{v}_{\mathrm{s}}=\mathrm{D} / \mathrm{T} \mathrm{SO} \mathrm{D}=\mathrm{v}_{\mathrm{s}} \mathrm{T}$
$\mathrm{T}=2 \mathrm{sec}$	$\mathrm{D}=(340 \mathrm{~m} / \mathrm{s}) \mathrm{X}(2 \mathrm{sec})$
$\mathrm{D}=$?	$\mathrm{D}=680 \mathrm{~m}$

Name: \qquad
Period: \qquad

$A+10 d B$ change we hear as twice as loud.	A-10 dB change we hear as half as loud.	2 ways: 1) Amplitude $=\mathbf{1} / \mathbf{(h i g h}-$ low) OR 2) $\mathbf{1} / \mathbf{2}($ peak to peak). (Distance from trough to crest divided by 2)
Ex. How much louder is a 50 $d B$ noise than a 40 dB noise? $50 \mathrm{~dB}-40 \mathrm{~dB}=+50 \mathrm{~dB}$ 50 dB is twice as loud as 40	Ex. How much softer is a 25 $d B$ noise than a $35 d B$ noise? $25 \mathrm{~dB}-35 \mathrm{~dB}=-10 \mathrm{~dB}$ 25 dB is half as loud as 35 dB .	Ex. Crest is at 3 cm ; Trough is at -5 cm . Find amplitude. $\begin{aligned} & \text { Way 1) } A=1 / 2(3 \mathrm{~cm}-(-5 \mathrm{~cm}))= \\ & 1 / 2(3 \mathrm{~cm}+5 \mathrm{~cm})=1 / 2(8)=4 \mathrm{~cm} . \end{aligned}$ Way 2) From -5 to $0=5 \mathrm{~cm} 5+3=8$. $\mathrm{A}=1 / 2(8)=4 \mathrm{~cm}$

What is the period of a 4 Hz wave?

What is the speed of a 10 Hz wave that's wavelength is 25 m ?

What is the frequency of a wave with a 2 second period?

How much louder is a 45 dB sound than a 35 dB sound?

If a noise drops from 80 dB to 70 dB , how do we hear the change?

If a standing wave's fundamental is 12 Hz what is the frequency of harmonic 4? (And how many antinodes will harmonic 4 have?)

You hear a hammer 5 seconds after you see it move. How far away is the hammer?

A sound wave has a 10 m wavelength. Find its frequency.

If a noise has a frequency of 17 Hz , find its wavelength.

Use the above graph to answer the following questions:

What harmonic is it? \qquad
Mark the nodes and antinodes: \qquad

If it's frequency is 60 Hz find its period: \qquad

Could a human hear this frequency? \qquad

Find the fundamental frequency:

Find the 4th harmonic frequency:

What is the amplitude of the wave? \qquad
What is the wavelength of the wave? \qquad

The total length of the standing wave is how many wavelengths?

