Name: Period:	HW Unit 8:5 — More C Mr. Muri cstephenmu	ay, IPC	A-day: Due Thurs., 3/1 (Assig: 2/27) B-day: Due Fri., 3/2 (Assig: 2/28)
Match the following situations with their Conservation of Energy Equations. 1. An object falls without friction. 2. An object falls part way down.	Conservation of Energy equations: A. 0 + W = Ep	8. A 4 kg ball is going 6 the bottom of a hill. (its energy.	
 An object at rest is pushed. A moving object is slowed down. A moving object is stopped. An object at rest on the ground is lifted into the air. An object falls and there is air friction. 	B. $Ep = Ek$ C. $Ek - W = 0$ D. $Ep = Ep + Ek$ up E. $0 + W = Ek$ F. $Ek - W = Ek$ G. $Ep - W = Ek$	12. How much Ep does it	have at C? have at B (half-way up)?
 14. A 2kg object is moving 4m/s. Friction (a force) stops it in 8 m. A) What kind of energy does it have before? B) What kind of energy does it have after? C) Does E_{before} = E_{after} or was work added or subtracted? (<i>Pick one of the three choices</i>.) D) Using all of the above, set up a Conservation of Energy equation (like what's on the front page). 		one)? 17. A person pushes with	gy did it have after?

15. Which one is always work: W_{out} or W_{in} (pick one)?

F) Calculate the efficiency of the energy transfer.