Name: _

Period:

HW Unit 8:4 — Conservation of Energy Mr. Murray, IPC cstephenmurray.com

A-day: Due Tues., 2/27 (Assig: 2/23) B-day: Due Wed., 2/28 (Assig: 2/26)

- A 2 kg ball starts 6 m up a hill.
 A) What kind of energy does it have at A?
 - B) Calculate the energy A.

C) How much Ek will it have at C (if no friction)?

- D) How much Ep will it have at E?
- E) If B and D are 1/2 as high as A, how much Ep does the object have at B?
- F) How much Ek does the object have at D?
- 4. A 5 kg object is lifted up to the back of a 2 m tall ledge by a 20 N force pushing up a 10 m long ramp.A) Calculate the work in.
 - B) Calculate the work out (what you got out).
 - C) Calculate the efficiency of moving the object.
 - D) Where did the extra energy go?

- 2. Is energy added or subtract?
 - A) _____A car slows down at a stop sign.
 - B) _____Friction acting on an object.
 - C) _____If $E_{before} = E_{after}$.
 - D) _____ If E_{before} is less than E_{after} .
 - E) _____If a force causes an object to speed up.
 - F) _____ If E_{before} is greater than E_{after} ($E_{before} > E_{after}$)
- 3. W_{in} or W_{out} ?
 - A) _____The force pushing an object up a ramp.
 - B) _____How much E_p an object gains when lifted.
 - C) _____ The E_K an object gains from being pushed.
 - D) _____Someone pushing down on a lever.
 - E) _____A person pulling rope out of a pulley.
 - F) _____How much usable energy the object has after work is done on it.

HW Unit 8:4

- 5. A 4 kg object starts at rest. A 25 N force pushes on it until it is going 5 m/s.
 - A) What kind of energy does it have before? $E_{before} =$
 - B) What kind of energy does it have afterwards? $E_{after} =$
 - C) Does $E_{before} = E_{after}$?
 - D) Was energy added or subtracted?

E) Write a Law of Conservation of Energy equation with the above information (put the above information into $E_{before} = E_{after}$):

F) Solve for the distance it was pushed.