

Period:

move in the magnetic field.

Magnetic Induction

You "induce vomiting" when someone drinks poison – you <u>force</u> them to vomit. Magnetic induction is the forcing of electric current by moving a magnet through wire loops.

Another way that might help you with this right hand

rule: if you turn a screw counterclockwise it will move up (out of its hole) - that's why counterclockwise is

Right-hand rule: To find the north pole of an electromagnet, simply wrap your right hand fingers in the direction of the electric current (from + to -). Your thumb will point in the direction of the electromagnet's *north pole*.

Motor or Generator? Depends on if electricity is going in or out.

magnetic

Second Right-hand rule:

If you are given two of these three: B, F, or v, you can find the third by using this right-hand-rule.

Your palm is in the direction of the magnetic force.

Your fingers are in the direction of the magnetic field.

Your thumb is in the direction the charge is moving.

∧	
B	

positive.

Turn a screw counterclockwise and it moves up - the positive direction.

Page #	Equation
	$F_{magnetic} = qvB$
see notes	$emf = -N \frac{\Delta [AB(\cos \theta)]}{\Delta t}$

В	Teslas (T)	Magnetic field strength	Strength of the magnetic field
q	Coulombs (C)	charge	Amount of charge moving in the mag field
N	No units	# of loops	The negative is not a part of N
А	m²	area	Area of the loop of wire
emf	volts	Induced voltage	Voltage produced by a changing magnetic field

Motor—makes work from electricity (stored work). Electricity makes electromagnets which push against permanent

Generators versus Motors

A motor and a generator are the same device in

reverse. One can be used as the other.

magnets to cause the motor to move. *Electricity In - Work Out.*

Generator—generates electricity from work (a force and distance). Moving magnets make electricity from magnetic induction. Generators usually move in circles. Work In - Electricity Out.