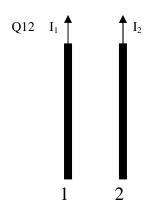

## Magnetism 3

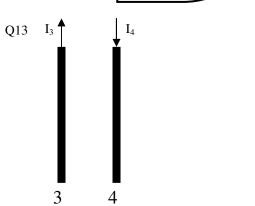




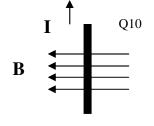



- 1. Label the magnets as N and S.
- Label the doughnut magnet's N and S poles.
- Draw the magnetic field lines between the poles of the horseshoe magnetic.
- Draw the magnetic field lines between the two magnets at the right.
- 5. Give the sign conventions for the following (draw the symbols):
  - A. Into page \_\_\_\_\_ C. Up \_\_\_\_\_
- E. Right \_\_\_\_\_

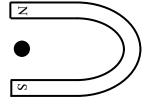
- B. Left \_\_\_\_\_ D. Out of Page \_\_\_\_ F. Down \_\_\_\_





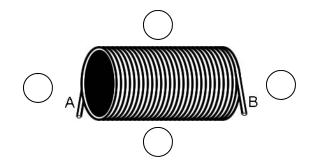


- The point of a compass is a N or S pole for the compass?
- The point of a compass will point towards a N or S pole of a magnet?
- If you put two compasses on top of each other, what happens and why?
- If the wire shown has a current running from left to right,
  - A) draw B above and below the wire using the symbols from Q5.
  - B) which direction is the magnetic field in front of the wire?
- 10. The thick black line is a wire carrying current up. The arrows show the direction of the magnetic field. Which direction is the force on the wire?
- 11. A) Which direction are the magnetic field lines going for the horseshoe magnet? (Drawing them might help.)
  - B) If the black dot shows a current carrying wire with the current coming out of the page, in which direction will the force be?
- 12. The two black lines (below left) are current carrying wires. The currents are in the same direction.
  - A) Which direction is B (magnetic field) on the right side of wire 1 (into or out of the page)?
  - B) Draw B on the right side of wire 1 (you just found the direction—now draw it).
  - C) Using the B that you just drew and the direction of I in wire 2, which direction will the force on wire 2 be?



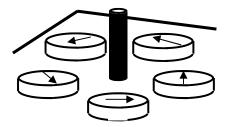

13. Following the same logic (same steps) as in Q12, find the direction of the force that wire 4 feels from wire 3. (Do steps A—C above for this problem.)



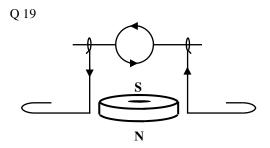





Q11




## Magnetism 3


- 14. A current carrying wire is coming out of the page (toward you), which way is B, clockwise or counterclockwise?
- 15. A current carrying wire is looped clockwise in the plane of the paper. Is B up or down?
- 16. A 12 N force is felt by a 2  $\mu$ C charge going 3 x 10<sup>4</sup> m/s. How big is the magnetic field?
- 17. The positive side of a battery is put on side B of the solenoid below.
  - A) Label the N and S sides of the solenoid.
  - B) Fill in the compasses to show which way they will point.



18. For the current carrying wire at the right, which direction is the current in the wire: up or down?



- 19. The arrows show the direction of positive current.
  - A) What is the direction of the magnetic field inside the loop of wire: into or out-of the page?
  - B) Using your direction from part A, will the loop of wire turn down towards the magnet or turn up away from the magnet?



Final review—use your book or the notes I gave out before.

- 20. Harmonic Motion review:
  - A) The repeated part of the motion we call the \_\_\_\_\_.
  - B) The is how long it takes a cycle to repeat.
  - C) The number of cycles each second is called the \_\_\_\_\_
  - D) The \_\_\_\_\_ shows the energy with a stronger wave or a wider swing.
  - E) Which affects the period of a pendulum: mass; length; amplitude?
- 21. Light review topics:
  - A) The speed of light in a vacuum is: \_\_\_\_\_.
  - B) The speed of radio waves is: \_\_\_\_\_.
  - C) Which has a longer wavelength: radio waves or x-rays?
  - D) Which has a higher frequency: visible light or ultraviolet light?
  - E) Light bouncing off of a hard boundary is called: \_\_\_\_\_.
  - F) Light changing speed at a clear boundary is called: \_\_\_\_\_.
  - G) Light bending around corners is called: \_\_\_\_\_