Notes for Electricity 7 (Jan 20 and 23)

- P = IV and V = IR. Derive an equation for power in a resistor: 1.
- 2. Check Equation and Variable Sheets
- 3. Talk again about Electric Fields (and drawing them)

Redraw this circuit so that all parallel branches are parallel to each other: 4

(Hint, start with series resistors: "squish them together" into one branch. May take a couple redraws.)

5. AC versus DC current - AC stands for Alternating Current. DC stands for Direct Current. A battery makes DC current flowing only one direction. AC current changes directions, constantly alternating from positive to negative. We use AC current in our houses. There is a ground (neutral) wire and a hot wire. The current through the hot wire goes one direction, then the other, switching 60 times a second (called 60 Hertz [Hz]).

6. Cost of Energy and Kilowatt hours:

Your electric company sells electricity in kilowatt-hours. If power is work (J)/time (s), then multiplying by time gives us work. And work is stored energy! So the electric company really does sell you electricity in joules – energy! Power x time = $\frac{\text{work}}{\text{time}}$ x time = work = *joules* = *energy*! K 1 kilowatt = 1000 watts.Cost of electricity = kWh x price per kWhTo get kilowatts, do a conversion: E Ex. If the electric company sells electricity Ex. 5000 watts is how many kilowatts?

 $(5000 \text{ W}) \frac{1 \text{ kW}}{1000 \text{ W}} = 5 \text{ kW}$

ilowatt-hours (kWh) = $P(kW) \times t(hr)$
Ex. How many kilowatt-hours to run a 10 kW mower for 90 minutes?
Change 90 minutes to 1.5 hours and:
$(10 \text{ kW}) \ge 1.5 = 15 \text{ kWh}$

at .10/kWh. How much does 12 kWh cost? (12 kWh)(.10) = 1.20 or \$1.20

Ex. If the electric company charges \$.06 per kWh, how		1. Power in watts (P = VI)	2. Find kW (divide 1. by 1000)	3. Find kWh (multiply 2. by time in hours)	4. Multiply 3. by cost per kWh
to run a 100-watt bulb for 2 hours a		Ex. 100 watt bulb	100 / 1000 = .1 kW	2 hours x 30 days = 60 hours (.1 kW)(60hr) = 6 kWh	(6 kWh)(.06) = \$.36 36 cents!
day for a month?					

Capacitor Equations (For capacitors only.) 7.

$$= \frac{Q}{\Delta V} \qquad PE_{electric} = \frac{1}{2}Q\Delta V \qquad C = \varepsilon_{o}\frac{A}{d}$$

C is capacitance in coulombs/volt (how much charge it can hold per volt).

A—area of the plates d-distance between plates

 ε_{o} —permittivity of a vacuum (how good an insulator a vacuum is) = 8.85 x 10⁻¹²

С

- Ways to increase capacitance: 8.
 - 1. Increase distance between plates— Farther apart = more insulation = more charge before it pushes across.
 - 2. Better dielectric (insulator in between the plates) again, better dielectric = better insulation = more charge.
 - 3. Increase plate area—more area = more charge can spread out = more charge can be held before it pushes across.